本文中,利用目标函数或约束条件的几何性质,提供了某些多元函数极值或最值问题的几何解法。
In the paper, it provides the geometrical solution to extreme value of many variables function by geometric properties of objective function or constraint condition.
本文提出了以功率消耗为目标函数、犁面几何参数的可行范围为约束条件的犁面优化设计方法。
This paper proposes an optimal method for plow bottom moldboard design by taking the power consumption of the objective and the feasible region of the geometric parameters for boundary constraints.
基于支承法兰盘的结构特征,通过目标函数的建立、设计变量的选取以及约束条件的确定建立了优化设计的有限元模型,并对法兰盘进行了静力分析。
Based on the structural characteristics of bearing flange, the optimization model is established according to the objective function, design variables and constraints, and make a static analysis.
应用推荐