In this paper, we take theγ= 3 isentropic gas dynamics equations for example to study the regularity of nonlinear hyperbolic conservation law's global weak entropy solutions.
本文以γ=3等熵气体动力学方程组为模型来研究非线性双曲型守恒律方程组整体弱熵解的正则性。
参考来源 - γ=3等熵气体动力学方程组Cauchy问题弱熵解的正则性In this paper, we take theγ= 3 isentropic gas dynamics equations for example to study the regularity of nonlinear hyperbolic conservation law's global weak entropy solutions.
本文以γ=3等熵气体动力学方程组为模型来研究非线性双曲型守恒律方程组整体弱熵解的正则性。
参考来源 - γ=3等熵气体动力学方程组Cauchy问题弱熵解的正则性·2,447,543篇论文数据,部分数据来源于NoteExpress
第四、五章研究了一类非线性抛物方程熵解的存在性。
In Chapter 4, 5, an existence result of entropy solutions to a class of nonlinear parabolic problems is established.
同时利用信息论中的不等式,直接地证明最小交互熵解就是对偶几何规划解;
Then, using the inequality of information theory, the paper directly proved that the minimum cross-entropy solution is exactly the dual geometric programming solution.
另外在第四章中,我们还研究了极端相对论方程组熵解的非相对论整体极限问题。
Moreover, in Chapter 4, we also consider the non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations.
应用推荐