混合聚类算法 hybrid clustering algorithm ; SGKM
Firstly,based on data acquisition and pretreatment,the original fault diagnosis samples were discretized by the hybrid clustering method. Then,the decision attribute was reduced to delete redundant information for obtaining the minimum fault feature subset.
首先在数据采集和预处理的基础上,利用混合聚类法对原始故障诊断样本进行离散化处理,然后利用粗糙集理论对样本决策表进行属性约简,删除冗余信息,得到能够覆盖原始数据特征的具有最小条件属性的相应学习样本集。
参考来源 - 粗糙集、神经网络和专家系统模型用于电力系统故障诊断Firstly,based on data acquisition and pretreatment,the original fault diagnosis samples were discretized by the hybrid clustering method. Then,the decision attribute was reduced to delete redundant information for obtaining the minimum fault feature subset.
首先在数据采集和预处理的基础上,利用混合聚类法对原始故障诊断样本进行离散化处理,然后利用粗糙集理论对样本决策表进行属性约简,删除冗余信息,得到能够覆盖原始数据特征的具有最小条件属性的相应学习样本集。
参考来源 - 粗糙集、神经网络和专家系统模型用于电力系统故障诊断·2,447,543篇论文数据,部分数据来源于NoteExpress
应用推荐