Compared to the Bajard J C(IEEE Transactions on Computers, 2004, No.6) algorithm, the number of modular multiplication is reduced by 300/(2k+8) percent.
该算法通过对相对固定的参数进行预计算,从而减少运算过程中模乘运算的次数,与Bajard J C提出的算法(IEEE计算机会刊,2004年第6期)相比减少300/(2k+8)。
参考来源 - 一种可重构模乘器的硬件设计A new bit-serial modular multiplication based on optimal normal and shifted canonical was presented.
研究中提出了新的基于正规基和正则基的比特串行模乘算法实现方案。
参考来源 - 基于FPGA椭圆曲线密码体制的研究·2,447,543篇论文数据,部分数据来源于NoteExpress
设计高效的模乘算法也成为密码应用领域关注和研究的焦点之一。
To design some efficient modular multiplication algorithms has now been one of focus of research and study of application field.
根据平行并行乘法器,设计了适用于模乘运算的一维阵列组合乘法器。
The one-array combinative multiplication was designed on the basis of the parallel multiplication.
模幂算法采用从右到左扫描指数的方法,可以使得两次模乘运算同时进行。
Modul ar exponentiation algorithm scans encryption from right to sot, so t wo modular multiplications can be processed parallelly.
应用推荐