提出新的条件信息熵及其高效知识约简算法。
A new conditional entropy and knowledge reduction algorithms are proposed.
提出了一种基于条件信息熵的知识约简启发式算法,并指出该算法的时间复杂度是多项式的。
A heuristic algorithm based on conditional information entropy for knowledge reduction is proposed, and the complexity of this algorithm is analyzed.
论文中利用信息熵、条件熵公式推导出先验知识度划分标准公式,该公式把信息熵公式中加权和转换为加权和加先验知识度参数。
The formula of the prior knowledge classification standard was deduced used of the information entropy and the condition entropy formula, which add the priori knowledge parameter to the weighting sum.
应用推荐