本文证明了成对比较矩阵在相容性矩阵集合中的最佳逼近的存在性和不唯一性。
The existence of a best approximation of the pairwise comparison matrix from the set of consistent matrices is proved.
本文首先证明了成对比较矩阵在相容性矩阵集合中的最佳逼近的存在性和不唯一性。
The existence of a best approximation to the pairwise comparison matrix from the set of consistent matrices is proved.
同时,作为应用,研究了最佳联合逼近元的存在性与唯一性问题。
As applications, existence and uniqueness of a best simultaneous approximation element are studied.
应用推荐