讨论局部对称空间中具有平行平均曲率向量的子流形,得到其关于第二基本形式模长平方的积分不等式的相关定理。
This paper discusses submanifolds with parallel mean curvature vector in local symmetric Spaces and obtains integral invariants about the square of modulus-length.
研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形。
The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.
该文研究了局部对称共形平坦空间中具有常数量曲率的紧致子流形,证明了这类子流形的某些内蕴刚性定理。
In this paper, the authors discuss the submanifolds with constant scalar curvature in a locally symmetric and conformally flat space, and obtain some intrinsic rigidity theorems.
应用推荐