在考虑存在失配位错的情况下,计算了驰豫晶格失配、曲率半径和失配位错密度。
In the case of considering the misfit dislocation, relaxed lattice mismatch, the radius of curvature and density of misfit dislocation were calculated.
接着详细计算了两种方案中磁阱的磁场强度及其梯度与曲率的空间分布,理论证明了实现磁光晶格和磁晶格的可行性。
We calculate the spatial distributions of magnetic fields and their gradients and curvatures, and the results prove the possibility of realizing MOL and ML.
同时,在模拟过程中,观察到了弯曲诱发扭转的现象,并揭示出扭转变形的内在起因是曲率诱导的晶格错配。
Notably, a twisting mode arising from curvature-induced lattice mismatch emerges with the rippling in the bent nanotubes.
应用推荐