针对高属性维稀疏数据聚类问题,提出高属性维稀疏信息系统概念,给出一种新的基于稀疏特征差异度的动态抽象聚类方法。
The concepts of high attribute dimensional information system are firstly proposed, and a new dynamic clustering method on the basis of sparse feature difference degree is presented.
在叙述实际应用的基础上抽象出最优位置查询概念,提出目标对象的优先权度量标准、删减数据对象的启发式规则和最优位置查询算法,分析最优位置查询算法的时间复杂度。
After describing real application, it presents the best location query, the priority of target object, the heuristic rule to delete data objects, and analyzes the time complexity of the algorithm.
应用推荐