在已有的英语语义词典及大量训练集的基础上,应用机器学习、数据挖掘等技术进行知识获取并最终形成若干个概念推理网。
Machine learning and data mining techniques are applied to acquire knowledge and build a concept reasoning network based on semantic dictionary and large training set.
一般信度网的精确推理是一个NPC问题。
Exact inference on general belief networks is a NPC problem.
本论文详细研究了信度网精确推理、信度网学习和信度网分类有关内容。
This dissertation focuses on efficient exact inference on belief networks, learning belief networks from data, and classification using belief networks.
应用推荐