当被控对象的特性发生变化时,可对混合神经网络权值及时进行修正并调整控制器参数使控制系统始终保持良好的控制性能。
The control system can adjust the weights of hybrid neural network and the parameters of controller timely to keep good control performance when the character of controlled plant varies.
并用这种改进的共轭梯度法对神经网络PID控制器参数实现在线修正。
The parameters of the neural network PID controller are modified on line by the improved conjugate gradient.
模糊控制器通过对洗衣机初始状态的学习,自动调整并选择合适的布量检测零点,修正水位判定参数。
By studding the initial state of washer, the fuzzy controller automatically adjust and select the appropriate zero point of detecting cloth weight, and correct the judgment parameter of water level.
应用推荐