循环差集(cyclic difference set)是一类特殊差集,即循环群中的差集,例如,若循环加群Z15的元素记为{0,1,…,14},则D={0,1,2,4,5,8,10}是一个(15,7,3)循环差集,循环差集和循环对称设计之间有着一一对应关系:当且仅当D是循环群G中的(v,k,λ)差集时,(G,dev D)是一个循环的(v,k,λ)-SBIBD。
We present a general method to construct binary sequences with at most 4-level autocorrelation based cyclic difference sets.
提出了基于循环差集构造至多4级自相关性的二元序列的通用方法。
参考来源 - 具有良好自相关性的二元伪随机序列·2,447,543篇论文数据,部分数据来源于NoteExpress
本文介绍了一个循环差集的存在性定理。
A new existence theorem on cyclic difference sets is introduced in this note.
对准循环Q矩阵和完全循环差集进行了研究,在此基础上提出了一种LDPC码码族的代数构造方法。
This paper presents an algebra method for constructing LDPC code based on Vandermonde matrix, which includes quasi-cyclic Q matrix and the perfect cyclic difference sets.
研究了密码中的拟完美序列和完美序列与循环差集的关系,用群表示论证明了三族循环差集的存在;进而构造出相应的拟完美序列。
The conception "almost perfect arrays" is proposed and it is shown that the existence of an almost perfect binary array is equivalent to the existence of a certain divisible difference set.
应用推荐