支持向量机是一种建立在统计学习理论(StatisticalLearningTheory,SLT) 基础上的机器学习方法,是数据挖掘的一种新技术,它基于有限样本和结构风险 最小化的原则,将线性不可分...
基于2个网页-相关网页
建立在统计学习理论(Statistical Learning Theory,SLT)之上的支持向量机(Support vectormachine,SVM)有着严格的数学理论基础[3],...
基于2个网页-相关网页
是建立在统计学习理论 Statistical Learning Theory
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。
Support Vector Machines(SVM) are developed from the theory of limited samples Statistical Learning Theory (SLT) by Vapnik et al. , which are originally designed for binary classification.
建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。
Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle.
接着对统计学习理论进行了介绍,深入探讨了建立在该理论基础上的SVM算法。
Secondly, the basic knowledge of the statistical learning theory has been introduced and the SVM based on the theory has been gone deep into discussed.
应用推荐