布朗定理是一个数论中的定理,由挪威数学家布朗在1919年提出。从定理定义式可推出,所有孪生素数的倒数之和收敛,其值称为布朗常数。布朗定理亦可应用于管理学领域。
现在,Raizen的研究证明了能量均分定理在布朗粒子中的正确性。这时3微米大小的玻璃微粒可以穿过。
Raizen's study now proves that the equipartition theorem is true for Brownian particles; in this case, glass beads that were three micrometers across.
在1985年从布朗运动的角度证明了定理1.1,本文利用构造凸包络的方法,给出了该定理偏微分上的证明。
In 1985, prove Theorem 1.1 from the point of Brown Motion. This paper USES the method of establishing the convex envelope, giving a proof in Partial Differential Equation.
研究了一列分式布朗运动的起伏极限,证明了广义收敛意义下的大数定律和中心极限定理。
In this paper, we investigate the fluctuation limit of a series of fractional Brownian motions, and prove the large number law and the central limit theorem in generalized convergence.
应用推荐