本文提出了一个基于信息增益和卡方检验的属性选择算法。
This paper proposes a new future selection algorithm based on information gain and chi-square test.
通过对原有决策树学习算法的研究,提出了以分类准确度为基础的属性选择算法;
We bring forward the newly attribute chosen algorithm based on classified certain degree of condition attributes for decision attribute.
针对原有互信息属性选择存在的偏向于低频词的问题,提出了一种改进的基于互信息的军用信息属性选择算法。
Aiming at the problem of trending to the low-frequency words existing in original mutual information method, we present an improved attribute-choosing algorithm of mi.
应用推荐