在网络信息检索中,基于文档向量空间的分类、聚类、排序与相关性反馈需要计算相似度。
In network information retrieval, based on document vector space, class, cluster, ranking and relevance feedback need to compute similarity.
由于词序相似度是影响简拼搜索排序结果的主要因素,该文提出了基于向量距离计算词序相似度的算法。
Since word order similarity is the main factor to the ranking results, an algorithm based on vector distance is devised to compute word order similarity in this paper.
为了将一般增量学习算法扩展到并行计算环境中,提出一种基于多支持向量机分类器的增量学习算法。
In order to extend common incremental learning algorithms into a parallel computation setting, an incremental learning algorithm with multiple support vector machine classifiers is proposed.
应用推荐