·2,447,543篇论文数据,部分数据来源于NoteExpress
文件通常会被分割成不同大小而且大小是可变的数据块,这样就非常容易导致碎片的存在。
Files are typically divided into fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
传统的基于可变模型的分割方法是一种只基于边界信息的分割方法,就充分利用图像信息的角度来说有其局限性。
Traditional deformable model based segmentation is a method merely based on edge information, which does not make full use of image information.
在此基础上提出了一种混合区域信息和边界信息的方法——基于融合颜色和强度先验信息的几何可变模型的医学图像分割算法。
Then a new method merging area information and edge information, geometric deformable model with color and intensity priors for medical image segmentation, is proposed.
应用推荐