针对化工中经常遇到的高度非线性问题,以塔板研究中的泄漏模型为例,采用人工神经网络中的BP(反向传播)算法进行处理。
High nonlinear problem which is often met in Chemical engineering, taking the study of tray leakage mode as example, is treated by adopted BP (back propagation) algorithm in artificial neural network.
该文介绍了一种基于人工神经网络的软件失效预测模型,给出了基于反向传播算法的多层前向网络的网络结构。
This paper presents a kind of software faults prediction model based on artificial neural network and the structure of the feed-forward multi-layer network with backpropagation learning algorithm.
本文根据人工神经网络的一典型模型—反向传播模型,以及地震荷载下的各项土的物理—力学参数,建立了土液化类型的神经网络数学模型。
A typical artificial neural network model-back-propagation model was presented for prediction on the soil liquefaction type based on the physical parameters of soils under earthquake.
应用推荐