在多复变的众多基本问题中,有一类重要的问题是实流形在复流形中的双全纯等价性。
Among many fundamental problems in Several complex Variables is the biholomorphic equivalence problem for real submanifolds in a complex manifold.
本文较系统地研究了多复变数双全纯映照子族的性质及其之间的关系。
In this thesis, we study the properties and relations of subclasses of biholomorphic mappings in several complex variables systematically.
的几何性质;第三章,讨论域d _ M上的正规化双全纯完全准凸映射的分解。
Chapter 3 is concerned with the decomposition theorem of normalized biholomorphic complete quasi-convex mappings on D_M.
应用推荐