在金属塑性加工过程中正向加载引起的塑性应变强化导致金属材料在随后的反向加载过程中呈现塑性应变软化(屈服极限降低)的现象。这一现象是包辛格(J.Bauschinger)于1886年在金属材料的力学性能实验中发现的。当将金属材料先拉伸到塑性变形阶段后卸载至零,再反向加载,即进行压缩变形时,材料的压缩屈服极限(σs)比原始态(即未经预先拉伸塑性变形而直接进行压缩)的屈服极限(σs)明显要低(指绝对值)。若先进行压缩使材料发生塑性变形,卸载至零后再拉伸时,材料的拉伸屈服极限同样是降低的。
该模型考虑了材料的各向异性、加工硬化特性及包辛格效应的影响。
This model took account of material anisotropic and work hardening properties, and included the influence of the Bauschinger effect.
建立了考虑板料中性层偏移、包辛格效应等因素的拉延筋解析模型。
The paper suggested a draw bead model in which Bauschinger effect and incline of neutral layer were taken into account.
针对复杂的交变载荷,采用运动强化模型反映塑性应变引起的各向异性和包辛格效应。
The (aeolotropism) and Bauschinger effect resulted from plastic deformation under cyclic loading were reflected by the kinematic hardening model in the SFEM.
应用推荐