定理1设函数在处可导,且在处取得极值,那么。
Theorem 1 if is differentiable at, and is a local extreme value of, then.
这两个函数一个是可导函数,用于计算局部网格单元质量平均值,另一个连续不可导,用于计算最差单元质量和质量平均值的差。
The first function calculates the average value of element qualities, and the second is used to measure the disparity between the worst element's quality and the average value for the local mesh.
文章针对被积函数是连续函数、可导函数的定积分不等式提出了几种有效的证明方法。
This article analyses how to prove the stable integral inequality effectively while knowing the function is continuous and derivative.
Now Isaac Newton and/or Joseph Raphson figured out how to do this kind of thing for all differentiable functions.
既然牛顿和拉复生已经,指数了如何解这种可导函数,因此我们就不用太担心了。
应用推荐