作为本文的主要结果,关于交换环上矩阵的正点定理,零点定理和非负点定理被建立。
As the main results, it gives a Positivstellensatz, a Nullstellensatz and a Nichtnegativstellensatz for matrices over a commutative ring.
交换环上矩阵代数的可解子代数和幂零子代数的自同构分解问题是一类重要的具有理论意义的研究课题。
It is theoretically important to solve the problems of decomposition of automorphisms of solvable subalgebra and nilpotent subalgebra of matrix algebra over commutative rings.
刻画了在非负无零因子交换半环上强保持可逆矩阵的线性算子。
The linear operators that strongly preserve invertible matrices over some antinegative commutative semirings with no zero divisors were characterized.
应用推荐