Using geometric properties to deal with the fixed point property of nonexpansive mapping in Banach spaces have being highly develpmented since Kirk proved that a Banach space with normal structure have weak fixed point property in 1965.
自从1965年,W. A. Kirk证明具有正规结构的Banach空间具有弱不动点性质10以来,利用Banach空间的空间性质研究非扩张映射的不动点性质得到了迅速的发展。
参考来源 - Banach空间的若干不动点性质·2,447,543篇论文数据,部分数据来源于NoteExpress
本文给出2 -赋范空间一致凸、一致正规结构、正规结构概念,指出这类空间具有不动点性质。
This paper introduces the concepts of uniform convex, uniformly normal structure and normal structure for 2-normed Spaces. It is proved that for such Spaces, the fixed point property holds.
证明了一类非线性离散动力系统不动点的两个判别方法,具体分析了两个不同类型的离散动力系统的不动点性质及其分岔特性。
Some nonlinear discrete dynamic systems are considered, and two discriminating methods of the fixed point are proved. The bifurcation behavior of the corresponding dynamic systems is also studied.
本文在完备的度量空间中给出了一类顺序映射的不动点及其性质。
This paper presents fixed points of a kind of Sequential mapping and its properties.
应用推荐