量子力学 百科内容来自于: 百度百科

量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

学科简介

量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
电子云

电子云

19世纪末,经典力学经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克、尼尔斯·玻尔、沃纳·海森堡、埃尔温·薛定谔、沃尔夫冈·泡利、路易·德布罗意、马克斯·玻恩、恩里科·费米、保罗·狄拉克、阿尔伯特·爱因斯坦、康普顿等一大批物理学家共同创立的。通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。通过量子力学许多现象才得以真正地被解释,新的、无法直觉想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。
有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的许多随机事件的例子,严格说来实为决定性的。
在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其变量的物理量出现的几率密度。

学科简史

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。
1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。
1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。
1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个
普朗克

普朗克

定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。
在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。
德布罗意的物质波方程:E=ħω,p=h/λ,其中ħ=h/2π,可以由
得到
由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。
1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩约尔当一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。
当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。
量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化
波粒二象性

波粒二象性

理论——量子场论,它构成了描述基本粒子现象的理论基础。
海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥ħ/2=h/4π。

基本原理

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
薛定谔

薛定谔

海森堡

海森堡

狄拉克

狄拉克

状态函数

在量子力学中,一个
玻尔

玻尔

物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。
根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。
态函数可以表示为展开在正交空间集里的态矢比如
,其中|i>为彼此正交的空间基矢,
为狄拉克函数,满足正交归一性质。 态函数满足薛定谔波动方程,
,分离变数后就能得到不显含时状态下的演化方程
,En是能量本征值,H是哈密顿算子
于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

微观体系

体系状态
但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。
据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。
微观体系
20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。
量子力学

量子力学

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。
人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可 能性。

不确定性

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离 . 不确定性指经济行为者在事先不能准确地知道自己的某种决策的结果。或者说,只要经济行为者的一种决策的可能结果不止一种,就会产生不确定性。
不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。
在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。
在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。

玻尔理论

玻尔,量子力学的杰出贡献者,玻尔指出:电子轨道量子化概念。玻尔认为, 原子核具有
电子云

电子云

一定的能级,当原子吸收能量,原子就跃迁更高能级或激发态,当原子放出能量,原子就跃迁至更低能级或基态,原子能级是否发生跃迁,关键在两能级之间的差值。根据这种理论,可从理论计算出里德伯常理,与实验符合的相当好。可玻尔理论也具有局限性,对于较大原子,计算结果误差就很大,玻尔还是保留了宏观世界中轨道的概念,其实电子在空间出现的坐标具有不确定性,电子聚集的多,就说明电子在这里出现的概率较大,反之,概率较小。很多电子聚集在一起,可以形象的称为电子云

泡利原理

由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量、电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。
这个全同粒子(identical particles) 的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由全同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的,就是反对称的。对称状态的粒子被称为玻色子,反对称状态的粒子被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子和中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。
这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,但它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性。
费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计

历史背景

19世纪末20世纪初,经典物理已经发展到了相当完善的地步,但在实验方面又遇到了一些严重的困难,这些困难被看作是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。下面简述几个困难:

黑体辐射问题

19世纪末,许多物理学家对黑体辐射非常感兴趣。黑体是一个理想化了的物体,它
可以吸收,所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。使用经典物理这个关系无法被解释。通过将物体中的原子看作微小的谐振子,马克斯·普朗克得以获得了一个黑体辐射的普朗克公式。但是在引导这个公式时,他不得不假设这些原子谐振子的能量,不是连续的(这与经典物理学的观点相违背),而是离散的: En=nhν
这里n是一个整数,h是一个自然常数。(后来证明正确的公式,应该以n+1/2来代替n,参见零点能量)。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。其值为
值

光电效应实验

由于紫外线照射,大量电子从金属表面逸出。经研究发现,光电效应呈现以下几个特点:
光电效应

光电效应

a. 有一个确定的临界频率,只有入射光的频率大于临界频率,才会有光电子逸出。
b. 每个光电子的能量只与照射光的频率有关。
c. 入射光频率大于临界频率时,只要光一照上,几乎立刻观测到光电子。
以上3个特点,c是定量上的问题,而a、b在原则上无法用经典物理来解释。

原子光谱学

光谱分析积累了相当丰富的资料,不少科学家对它们进行了整理与分析,发现原子光谱是呈分立的线状光谱而不是连续分布。谱线的波长也有一个很简单的规律。
Rutherford模型发现后,按照经典电动力学,加速运动的带电粒子将不断辐射而丧失能量。故,围绕原子核运动的电子终会因大量丧失能量而’掉到’原子核中去。这样原子也就崩溃了。但现实世界表明,原子是稳定的存在着。
能量均分定理
在温度很低的时候能量均分定理不适用。

光量子理论

量子理论是首先在黑体辐射问题上突破的。Planck为了从理论上推导他的公式,提出了量子的概念-h,不过在当时没有引起很多人的注意。Einstein利用量子假设提出了光量子的概念,从而解决了光电效应的问题。Einstein还进一步把能量不连续的概念用到了固体中原子的振动上去,成功的解决了固体比热在T→0K时趋于0的现象。光量子概念在Compton散射实验中得到了直接的验证。
玻尔的量子论
Bohr把Planck-Einstein的概念创造性的用来解决原子结构和原子光谱的问题,提出了他的原子的量子论。主要包括两个方面:
a. 原子能且只能稳定的存在分立的能量相对应的一系列的状态中。这些状态成为定态。
b. 原子在两个定态之间跃迁时,吸收或发射的频率v是唯一的,由hv=En-Em 给出。 Bohr的理论取得了很大的成功,首次打开了人们认识原子结构的大门,它存在的问题和局限性也逐渐为人们发现。

德布罗意波

在Planck与Einstein的光量子理论及Bohr的原子量子论的启发下,考虑到光具有波粒二象性,de Broglie根据类比的原则,设想实物粒子也具有波粒二象性。他提出这个假设,一方面企图把实物粒子与光统一起来,另一方面是为了更自然的去理解能量的不连续性,以克服Bohr量子化条件带有人为性质的缺点。实物粒子波动性的直接证明,是在1927年的电子衍射实验中实现的。

量子物理学

量子力学本身是在1923-1927年一段时间中建立起来的。两个等价的理论---矩阵力学和波动力学几乎同时提出。矩阵力学的提出与Bohr的早期量子论有很密切的关系。Heisenberg一方面继承了早期量子论中合理的内核,如能量量子化、定态、跃迁等概念,同时又摒弃了一些没有实验根据的概念,如电子轨道的概念。Heisenberg、Bohn和Jordan的矩阵力学,从物理上可观测量,赋予每一个物理量一个矩阵,它们的代数运算规则与经典物理量不同,遵守乘法不可易的代数。波动力学来源于物质波的思想。Schr dinger在物质波的启发下,找到一个量子体系物质波的运动方程-Schr dinger方程,它是波动力学的核心。后来Schr dinger还证明,矩阵力学与波动力学完全等价,是同一种力学规律的两种不同形式的表述。事实上,量子理论还可以更为普遍的表述出来,这是Dirac和Jordan的工作。
量子物理学的建立是许多物理学家共同努力的结晶,它标志着物理学研究工作第一次集体的胜利。

实验现象

光电效应

1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值(截止频率)后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子(光子这个名称后来才出现)的理论,来解释这个现象。光的量子的能量为hν
在光电效应中这个能量被用来将金属中的电子射出(逸出功W0)和加速电子(动能):
爱因斯坦光电效应方程:
1/2mv∧2═hν-W0
这里m是电子的质量,v是其速度。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。

原子能级跃迁

20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(赖曼系)、一个可见光系列(巴耳末系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。
1913年,尼尔斯·玻尔提出了以他命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量En的轨道上运转。假如一个电子,从一个能量比较高的轨道(En),跃到一个能量比较低的轨道(Em)上时,它发射的光的频率为。
通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。
玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+,Li2+,Be3+等。但无法准确地解释其它原子的物理现象

电子的波动性

德布罗意假设,电子也同时伴随着一个波,他预言电子在通过一个小孔或者晶体的时候,应该会产生一个可观测的衍射现象。1925年,当戴维孙和革末在进行电子在镍晶体中的散射实验时,首次得到了电子在晶体中的衍射现象。当他们了解到德布罗意的工作以后,于1927年又较精确地进行了这个实验。实验结果与德布罗意波的公式完全符合,从而有力地证明了电子的波动性。
电子的波动性也同样表现在电子在通过双狭缝时的干涉现象中。如果每次只发射一个电子,它将以波的形式通过双缝后,在感光屏上随机地激发出一个小亮点。多次发射单个电子或者一次发射多个电子,感光屏上将会出现明暗相间的干涉条纹。这就再次证明了电子的波动性。
电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。
从来不可能有半个电子,所以在这个电子的双缝干涉实验中,是电子以波的形式同时穿过两条缝,自己与自己发生了干涉,不能错误地认为是两个不同的电子之间的干涉。值得强调的是,这里波函数的叠加,是概率幅的叠加而不是如经典例子那样的概率叠加,这个“态叠加原理”是量子力学的一个基本假设。

相关概念

波和粒子

振动粒子的量子论诠释
物质的粒子性由能量E 和动量p 刻划,波的特征则由电磁波频率γ 和其波长λ 表达,这两组物理量的比例因子由普朗克常数h(h=6.626*10^-34J·s) 所联系。
E=hγ , E=mc^2 联立两式,得:m=hγ/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mv
则p=vhγ/c^{2}(p 为动量)
粒子波的一维平面波的偏微分波动方程,其一般形式
量子力学

量子力学

dξ/dx=(1/γ)(dξ/dt) [5]
三维空间中传播的平面粒子波的经典波动方程为
dξ/dx+dξ/dy+dξ/dz=(1/γ)(dξ/dt) [6]
波动方程是借用经典力学中的波动理论,对微观粒子波动性的一种描述。通过这个桥梁,使得量子力学中的波粒二象性得到了很好的表达。
经典波动方程1,1'式或[6]式中的u,隐含着不连续的量子关系E=hγ和德布罗意关系λ=h/p,由于u=γλ,故可在u=vλ的右边乘以含普朗克常数h的因子(h/h),就得到
u=(γh)(λ/h)
=E/p
等关系u=E/p,使经典物理与量子物理,连续与不连续(定域)之间产生了联系,得到统一 .
粒子波 德布罗意物质波
德布罗意关系λ=h/p,和量子关
德布罗意

德布罗意

系E=hγ(及薛定谔方程)这两个关系式实际表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分.德布罗意物质波是粒波一体的真物质粒子,光子,电子等的波动.
海森堡测不准原理
即物体动量的不确定性乘以其位置的不确定性至少为一个确定的常数。

测量过程

量子力学与经典力学的一个主要区别,在于测量过程在理论中的地位。在经典力学中,一个物理系统的位置和动量,可以无限精确地被确定和被预言。至少在理论上,测量对这个系统本身,并没有任何影响,并可以无限精确地进行。在量子力学中,测量过程本身对系统造成影响。
要描写一个可观察量的测量,需要将一个系统的状态,线性分解为该可观察量的一组本征态的线性组合。测量过程可以看作是在这些本征态上的一个投影,测量结果是对应于被投影的本征态的本征值。假如,对这个系统的无限多个拷贝,每一个拷贝都进行一次测量的话,我们可以获得所有可能的测量值的机率分布,每个值的机率等于对应的本征态的系数的绝对值平方。
由此可见,对于两个不同的物理量A和B的测量顺序,可能直接影响其测量结果。事实上,不相容可观察量就是这样的,即 。

不确定性

最著名的不相容可观察量,是一个粒子的位置x和动量p。它们的不确定性Δx和Δp的乘积,大于或等于普朗克常数的一半:
海森堡1927年发现的“不确定性原理”,也常称为“不确定关系”或者“测不准关系”,说的是两个不对易算符所表示的力学量(如坐标和动量,时间和能量等),不可能同时具有确定的测量值。其中的一个测得越准确,另一个就测得越不准确。它说明:由于测量过程对微观粒子行为的“干扰”,致使测量顺序具有不可交换性,这是微观现象的一个基本规律。实际上,像粒子的坐标和动量这样的物理量,并不是本来就存在而等待着我们去测量的信息,测量不是一个简单的“反映”过程,而是一个“变革”过程,它们的测量值取决于我们的测量方式,正是测量方式的互斥性导致了测不准关系。
机率
通过将一个状态分解为可观察量本征态的线性组合,可以得到状态在每一个本征态的机率幅c i。这机率幅的绝对值平方|c i| 2就是测量到该本征值n i的概率,这也是该系统处于本征态的概率。ci可以通过将投影到各本征态上计算出来:
因此,对于一个系综的完全相同系统的某一可观察量,进行同样地测量,一般获得的结果是不同的;除非,该系统已经处于该可观察量的本征态上了。通过对系综内,每一个同一状态的系统,进行同样的测量,可以获得测量值ni的统计分布。所有试验,都面临着这个测量值与量子力学的统计计算的问题。
  
同样粒子的不可区分性和量子纠缠
往往一个由多个粒子组成的系统的状态,无法被分离为其组成的单个粒子的状态,在这种情况下,单个粒子的状态被称为是纠缠的。纠缠的粒子有惊人的特性,这些特性违背一般的直觉。比如说,对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。这个现象并不违背狭义相对论,因为在量子力学的层面上,在测量粒子前,你不能定义它们,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠这状态。

量子脱散

作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于微观系统,那么,它应该提供一个过渡到宏观“经典”物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释宏观系统的经典现象。尤其无法直接看出的是,量子力学中的叠加状态,如何应用到宏观世界上来。1954年,爱因斯坦在给马克斯·波恩的信中,就提出了怎样从量子力学的角度,来解释宏观物体的定位的问题,他指出仅仅量子力学现象太“小”无法解释这个问题。
这个问题的另一个例子是由薛定谔提出的薛定谔的猫的思想实验。
直到1970年左右,人们才开始真正领会到,上述的思想实验,实际上并不实际,因为它们忽略了不可避免的与周围环境的相互作用。事实证明,叠加状态非常容易受周围环境的影响。比如说,在双缝实验中,电子或光子与空气分子的碰撞或者发射辐射,就可以影响到对形成衍射非常关键的各个状态之间的相位的关系。在量子力学中,这个现象被称为量子脱散。它是由系统状态与周围环境影响的相互作用导致的。这个相互作用可以表达为每个系统状态与环境状态的纠缠。其结果是只有在考虑整个系统时(即实验系统+环境系统)叠加才有效,而假如孤立地只考虑实验系统的系统状态的话,那么就只剩下这个系统的“经典”分布了。量子脱散是今天量子力学解释宏观量子系统的经典性质的主要方式。
对于量子计算机来说,量子脱散也有实际意义。在一台量子计算机中,需要多个量子状态尽可能地长时间保持叠加。脱散时间短是一个非常大的技术问题。

理论演变

理论的产生及其发展

量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。
19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hf为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且跟"辐射能量与频率无关,由振幅确定"的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。
爱因斯坦于1905年提出了光量子说。1916年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。
爱因斯坦

爱因斯坦

1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定性(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差
确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铪的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。
由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。
1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。
光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学———费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原于中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。
1924年,法国物理学家德布罗意提出了表达波粒二象性的爱因斯坦———德布罗意关系:E=hV,p=h/入,将表征粒子性的物理量能量、动量与表征波性的频率、波长通过一个常数h相等。
1925年,德国物理学家海森伯和玻尔,建立了量子理论第一个数学描述———矩阵力学。1926年,奥地利科学家提出了描述物质波连续时空演化的偏微分方程———薛定谔方程,给出了量子论的另一个数学描述——波动力学。1948年,费曼创立了量子力学的路径积分形式。
量子力学在高速、微观的现象范围内具有普遍适用的意义。它是现代物理学基础之一,在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。量子力学的产生和发展标志着人类认识自然实现了从宏观世界向微观世界的重大飞跃。

  

与经典物理学的界限

1923年,尼尔斯·玻尔提出了对应原理,认为量子数(尤其是粒子数)高到一定的极限后的量子系统,可以很精确地被经典理论描述。这个原理的背景是,事实上,许多宏观系统,可以非常精确地被经典理论,如经典力学和电磁学来描写。因此一般认为在非常“大”的系统中,量子力学的特性,会逐渐退化到经典物理的特性,两者并不相抵触。因此,对应原理是建立一个有效的量子力学模型的重要辅助工具。量子力学的数学基础是非常广泛的,它仅要求状态空间是希尔伯特空间,其可观察量是线性的算符。但是,它并没有规定在实际情况下,哪一种希尔伯特空间、哪些算符应该被选择。因此,在实际情况下,必须选择相应的希尔伯特空间和算符来描写一个特定的量子系统。而对应原理则是做出这个选择的一个重要辅助工具。这个原理要求量子力学所做出的预言,在越来越大的系统中,逐渐近似经典理论的预言。这个大系统的极限,被称为“经典极限”或者“对应极限”。因此可以使用启发法的手段,来建立一个量子力学的模型,而这个模型的极限,就是相应的经典物理学的模型。

与狭义相对论的结合

量子力学在其发展初期,没有顾及到狭义相对论。比如说,在使用谐振子模型的时候,特别使用了一个非相对论的谐振子。在早期,物理学家试图将量子力学与狭义相对论联系到一起,包括使用相应的克莱因-高登方程,或者狄拉克方程,来取代薛定谔方程。这些方程虽然在描写许多现象时已经很成功,但它们还有缺陷,尤其是它们无法描写相对论状态下,粒子的产生与消灭。通过量子场论的发展,产生了真正的相对论量子理论。量子场论不但将可观察量如能量或者动量量子化了,而且将媒介相互作用的场量子化了。第一个完整的量子场论是量子电动力学,它可以完整地描写电磁相互作用。
一般在描写电磁系统时,不需要完整的量子场论。一个比较简单的模型,是将带电荷的粒子,当作一个处于经典电磁场中的量子力学物体。这个手段从量子力学的一开始,就已经被使用了。比如说,氢原子的电子状态,可以近似地使用经典的1/r电压场来计算。但是,在电磁场中的量子起伏起一个重要作用的情况下,(比如带电粒子发射一颗光子)这个近似方法就失效了。
强弱相互作用
强相互作用量子场论量子色动力学,这个理论描述原子核所组成的粒子(夸克和胶子)之间的相互作用。弱相互作用与电磁相互作用结合在电弱相互作用中。
万有引力
至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。寻求解决这个矛盾的答案,是理论物理学的一个重要目标(量子引力)。但是至今为止,找到引力的量子理论的问题,显然非常困难。虽然,一些亚经典的近似理论有所成就,比如对霍金辐射的预言,但是至今为止,无法找到一个整体的量子引力的理论。这个方面的研究包括弦理论等。

应用学科

在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光电子显微镜原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。
在上述这些发明创造中,量子力学的概念和数学描述,往往很少直接起了一个作用,而是固体物理学化学、材料科学或者核物理学的概念和规则,起了主要作用,但是,在所有这些学科中,量子力学均是其基础,这些学科的基本理论,全部是建立在量子力学之上的。以下仅能列举出一些最显著的量子力学的应用,而且,这些列出的例子,肯定也非常不完全。

原子物理学

原子物理和化学
任何物质的化学特性,均是由其原子和分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,而且在许多情况下,只要使用简化的模型和规则,就足以确定物质的化学特性了。在建立这样的简化的模型中,量子力学起了一个非常重要的作用。
一个在化学中非常常用的模型是原子轨道。在这个模型中,分子的电子的多粒子状态,通过将每个原子的电子单粒子状态加到一起形成。这个模型包含着许多不同的近似(比如忽略电子之间的排斥力、电子运动与原子核运动脱离等等),但是它可以近似地、准确地描写原子的能级。除比较简单的计算过程外,这个模型还可以直觉地给出电子排布以及轨道的图像描述。
通过原子轨道,人们可以使用非常简单的原则(洪德定则)来区分电子排布。化学稳定性的规则(八隅律、幻数)也很容易从这个量子力学模型中推导出来。
通过将数个原子轨道加在一起,可以将这个模型扩展为分子轨道。由于分子一般不是球对称的,因此这个计算要比原子轨道要复杂得多。理论化学中的分支,量子化学计算机化学,专门使用近似的薛定谔方程,来计算复杂的分子的结构及其化学特性的学科。
原子核物理学
原子核物理学是研究原子核性质的物理学分支。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构、带动相应的核子技术进展。

固体物理学

为什么金刚石硬、脆和透明,而同样由碳组成的石墨却软而不透明?为什么金属导热、导电,有金属光泽?发光二极管、二极管和三极管的工作原理是什么?铁为什么有铁磁性?超导的原理是什么?
以上这些例子,可以使人想象到固体物理学的多样性。事实上,凝聚态物理学是物理学中最大的分支,而所有凝聚态物理学中的现象,从微观角度上,都只有通过量子力学,才能正确地被解释。使用经典物理,顶多只能从表面上和现象上,提出一部分的解释。
以下列出了一些量子效应特别强的现象:
晶格现象
音子、热传导
静电现象
压电效应
电导
绝缘体、导体
磁性
铁磁性
低温态
玻色-
维效应
量子线、量子点

量子信息学

研究的焦点在于一个可靠的、处理量子状态的方法。由于量子状态可以叠加的特性。理论上,量子计算机可以高度平行运算。它可以应用在密码学中。理论上,量子密码术可以产生完全可靠的密码。但是,实际上,这个技术还非常不可靠。另一个当前的研究项目,是将量子状态传送到远处的量子隐形传送。

哲学解释

哲学问题

关于量子力学的解释涉及许多哲学问题,其核心是因果律和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。
但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。
量子力学可以算作是被验证的最严密的物理理论之一了。至今为止,所有的实验数据均无法推翻量子力学。大多数物理学家认为,它“几乎”在所有情况下,正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除上述的万有引力的量子理论的缺乏外,至今为止对量子力学的解释存在着争议。

解释

假如,量子力学的数学模型,是它的适用范围内的完整的物理现象的描写的话,那么,我们发现测量过程中,每次测量结果的机率性的意义,与经典统计理论中的机率,意义不同。即使完全相同的系统的测量值,也会是随机的。这与经典的统计力学中的机率结果不一样。在经典的统计力学中,测量结果的不同,是由于实验者无法完全复制一个系统,而不是因为测量仪器无法精确地进行测量。在量子力学的标准解释中,测量的随机性是基本性的,是由量子力学的理论基础获得的。由于量子力学尽管无法预言单一实验的结果,依然是一个完整的自然的描写,使得人们不得不得出以下结论:世界上不存在通过单一测量可以获得的客观的系统特性。一个量子力学状态的客观特性,只有在描写其整组实验所体现出的统计分布中,才能获得。爱因斯坦(“量子力学不完整”,“上帝不掷股子”)与尼尔斯·玻尔是最早对这个问题进行争论的。玻尔维护不确定原理和互补原理。在多年的、激烈的讨论中,爱因斯坦不得不接受不确定原理,而玻尔则削弱了他的互补原理,这最后导致了今天的哥本哈根诠释
今天,大多数物理学家,接受了量子力学描述所有一个系统可知的特性,以及测量过程无法改善,不是因为我们的技术问题所导致的的见解。这个解释的一个结果是,测量过程打扰薛定谔方程,使得一个系统塌缩到它的本征态。除哥本哈根诠释外,还有人提出过一些其它解释方式。其中比较有影响的有:
1.戴维·玻姆提出了一个不局部的,带有隐变量的理论(隐变量理论)。在这个解释中,波函数被理解为粒子的一个引波。从结果上,这个理论预言的实验结果,与非相对论哥本哈根诠释的预言完全一样,因此,使用实验手段无法鉴别这两个解释。虽然,这个理论的预言是决定性的,但是,由于不确定原理无法推测出隐变量的精确状态。其结果是与哥本哈根诠释一样,使用这来解释实验的结果,也是一个概率性的结果。至今为止,还不能确定这个解释,是否能够扩展到相对论量子力学上去。路易斯·德布罗意和其他人也提出过类似的隐藏系数解释。
2.休·艾弗雷特三世提出的多世界诠释认为,所有量子理论所做出的可能性的预言,全部同时实现,这些现实成为互相之间一般无关的平行宇宙。在这个诠释中,总的波函数不塌缩,它的发展是决定性的。但是由于我们作为观察者,无法同时在所有的平行宇宙中存在,因此,我们只观察到在我们的宇宙中的测量值,而在其它宇宙中的平行,我们则观察到他们的宇宙中的测量值。这个诠释不需要对测量的特殊的对待。薛定谔方程在这个理论中所描写的也是所有平行宇宙的总和。
3.另一个解释方向是将经典逻辑改成一个量子逻辑来排除解释的困难。
以下列举了对量子力学的解释,最重要的实验和思想实验:
1.爱因斯坦-波多斯基-罗森悖论以及相关的贝尔不等式,明显地显示了,量子力学理论无法使用“局部”隐变量来解释;但是,不排除非局部隐藏系数的可能性。
2.双缝实验是一个非常重要的量子力学试验,从这个试验中,也可以看到量子力学的测量问题和解释的困难性,这是最简单而明显地显示波粒二象性的试验了。

相关问题

量子力学的许多解释,涉及到一般的哲学问题,这些问题又涉及到本体论、认识论和科学哲学的基本概念和理论。以下为一些这些问题:
1.决定论:自然是偶然的还是自然规律是严格决定性的?
2.局部性/可分离性:所有的相互作用都是局部性的还是有远程相互作用?
3.因果
4.现实
5.完全性:存在一个万有理论吗?

图书信息


  作者:高守恩、杨建宋
出版社:清华大学出版社

图书详细信息:


  ISBN:9787302350941
  定价:32元
  印次:1-1
  装帧:平装
  印刷日期:2014-5-9

  

图书简介:


  本书是为物理学专业与应用物理专业本科生学习量子力学课程而编写的,也可以作为理工科其他专业的学生学习量子力学的主要参考书。内容包括量子力学的实验基础、波函数与薛定谔方程、一维定态问题、量子力学的数学初步和基本假设、与时间无关问题的代数研究、中心力场、定态微扰理论、变分法、与时间有关的微扰理论——量子跃迁、几个典型应用、弹性散射、全同粒子体系。本书设定的教学学时在70学时左右。书中安排了一些选读内容,还安排了一定数量的习题,可以使读者更深入地掌握有关内容,并能应用量子力学解决一些实际问题。

前言

为解释黑体辐射的能谱问题,1900年普朗克提出了“能量子”假设,开创了研究微观世界
  物理理论的新纪元。随着量子力学的诞生和发展,人类对微观世界的物质运动规律的认知
  达到了前所未有的程度,物理学对科学技术的发展和人类文明的进步做出了重要贡献。
  20世纪之所以被称为物理学的世纪,相对论和量子力学起了主要作用。量子力学理论被广
  泛地应用到物理学的所有领域,并对其他自然科学学科的发展和生产技术领域的进步也产
  生了重大的影响。现代宇宙学、现代光学、量子信息学、生物遗传工程、量子化学、激光
  和超导等领域都在量子力学的基础上得到飞速发展。量子场论、相对论量子力学、规范场
  理论、量子固体理论等理论的发展与成熟,也为量子力学理论的深入发展注入了新的活力
  和强劲的动力。量子力学在各个科技领域取得的成就,深化了人类对微观世界的认识,极
  大地增强了人类对自然的支配能力,同时也成为人类处理微观世界问题最重要的理论,成
  为几乎所有高等学校相关专业涉及微观领域必学的一门专业基础课程。
  本书的编者之一高守恩曾在安徽大学、杭州师范学院的物理学专业多次讲授量子力学课程,
  虽然现在国内外量子力学的教材很多,其中不乏优秀的教材,但对于师范院校的学生,真
  正适合学生的教材并不是很多。相比综合性大学,师范类学生由于要学习大量的教育类课
  程,所以在专业课学习方面就受到课时压缩的限制,学生的近代物理基础和数学基础也没
  有综合型大学厚实,针对这些情况,我们编写了这套讲义,并在教学中使用了多年。从使
  用的效果来看,它有效地解决了学生近代物理基础和数学基础不够厚实的困境,教学的深
  度也基本达到了综合型大学的要求,学生在大四考研时,参加量子力学这门课程的研招考
  试也觉得有信心。历届用过本讲义的学生,考研时在量子力学课程上的表现都不错。本书
  就是在该讲义基础上修编而成的。
  全书共分为 13章。第 1章量子力学的实验基础,重点介绍量子力学起源时的诸如黑体辐射、
  光电效应等几个著名实验,从中可以看到“头顶上的几朵乌云”如何使得经典物理学无能
  为力,催生出新的微观世界的理论——量子力学成为必然。第 2章波函数与薛定谔方程,
  内容包括波函数及其统计解释以及薛定谔方程,揭示了在微观粒子具有波粒二象性的基础上,
  如何用波函数来描写其状态,如何建立薛定谔方程来讨论其运动。第 3章一维定态问题,
  这一章是用薛定谔方程来讨论几个简单的量子体系问题,包括方势阱、谐振子、 .函数势、
  自由粒子、势垒上的散射和贯穿问题。第 4章量子力学的数学初步,讨论单粒子的波函数
  空间和表象与表象变换两个问题,目的是使读者能迅速地掌握量子力学中用到的最基本的
  数学工具,着眼于量子力学中一些有用的数学概念和数学运算,而略去了那些普遍定义和
  严格证明。第 5章介绍量子力学的基本假设,内容涉及态和态的叠加原理、力学量的算符
  表示、测不准关系、运动方程、全同粒子体系和交换对称性。量子力学就是建立在这几个
  基本假设上的,虽然这些假设不能为实验所证明,但近一个世纪以来从量子力学所得的结
  果和实验结果很好地符合这一事实,也充分证实了这些量子力学基本假设的正确性。
  第 6章是与时间无关问题的代数研究,从量子力学的基本假设和数学出发重新考虑线性谐
  振子,进而再研究一维和三维刚性转子的运动,角动量本征值的代数求解,可为讨
  量子力学
  论转动和转动不变性以及自旋建立很好的基础。第 7章讨论中心力场问题。在量子力学中,
  中心力场具有十分重要的地位。这一章首先在球坐标系中对薛定谔方程进行分离变量,进
  而用之讨论无限深的球势阱,讨论三维各向同性的谐振子,讨论氢原子问题和两体问题,
  特别是氢原子问题的量子力学求解,是对量子力学基本假设的重要验证。第 8章定态微扰
  理论,讨论量子力学中一个重要的近似方法。内容涉及非简并的和简并的微扰理论,并应
  用于解释氢原子的一级斯塔克效应。第 9章变分法。在微扰方法不再适用时,变分法是量
  子力学处理实际问题的另一个重要的近似方法。本章内容涉及变分法的基本理论以及在谐
  振子、氢原子和氦原子上的变分处理。第 10章是与时间有关的微扰理论——量子跃迁,内
  容涉及量子跃迁和量子几率,一级含时微扰理论,几种典型微扰下的跃迁几率,关于能量
  与时间的测不准关系,原子对电磁辐射的吸收和发射,激光原理。第 11章是前面几章方法
  的应用,在这一章中,首先讨论了规范变换,进一步讨论了粒子在均匀磁场中的运动和朗
  道能级、量子霍尔效应、均匀磁场中的电子自旋动力学和磁共振、角动量耦合、塞曼效应、
  自旋单态和三重态,本章的许多问题已经在原子物理课程中涉及,但读者在这里可以看到
  用量子力学的全新视野如何重新审视这些问题。第 12章讨论弹性散射,这是可以和物理实
  验紧密对照的课题。将首先介绍散射界面和散射的量子力学描述,进而讨论分波法和光学
  定理,讨论在方势阱和方势垒上产生的散射现象。这一章还涉及低能散射,也讨论了波恩
  近似和金属粒子的散射问题。第 13章讨论全同粒子体系,主要讨论了由两个全同粒子组成
  的系统,讨论了氦原子和氢分子问题,最后讨论了占有数空间下玻色子和费米子的二次量
  子化问题。
  本书的讲义原稿以高守恩为主编写,杨建宋对原讲义进行了补充和修订。本书的统稿
  和技术加工由杨建宋完成。
  本书适用的对象主要是普通高等院校和师范类院校的物理系学生和教师,可作为他们“量
  子力学”课程的教材或主要参考书。也可以作为理科其他专业(如化学类)学生学习量子
  力学或量子化学课程的主要参考书。本书的推荐学时是每周 4学时,一个学期共 70学时左
  右。本书的宗旨就是在有限的篇幅内,对量子力学有一个完整准确的描述,使读者对应用
  量子力学解决实际问题有一个全新的了解。在现在物理类学生硕士招生考试中,量子力学
  常常是一门必考的课程,本书将用严谨的主体知识结构和丰富实用的量子力学应用为读者
  参加研招考试提供帮助。限于编者的水平,书中肯定有不够完善之处,希望读者不吝指正。
  在本书的编写和出版过程中,得到了杭州师范大学理学院的大力支持,也得到了国家
  自然科学基金( No. 11274084)和杭州师范大学“大学物理教学改革”、“近代物理实验
  精品课程建设”以及“经亨颐学院物理专业特色课程群建设”等课改项目的支持,李康教授
  仔细阅读了书稿,并提出了很多有益的建议,这些建议已经在书稿的修编中得到了很好的
  体现。在此谨向他们表示衷心的感谢。
高守恩 杨建宋
  2014年 4月

目录

第 1章 量子力学的实验基础 1
  11黑体辐射和普朗克假设 2
  12爱因斯坦光量子理论,光的波粒二象性 3
  13玻尔的量子理论 6
  14德布罗意假设,实物粒子波粒二象性 8
  15量子力学的建立 10
  习题 11
  第 2章波函数与薛定谔方程 12
  21波函数及其统计解释 12
  22薛定谔方程 14
  习题 21
  第 3章 一维定态问题 23
  31 引言 23
  32一维方势阱,束缚态 24
  33一维谐振子 30
  34关于束缚态的几个定理 35
  35 δ函数 36
  36 引力 δ函数势 38
  37自由粒子 42
  38一维有限高阶梯势垒上散射 44
  39一维方势垒贯穿——隧道效应 46
  习题 49
  第 4章 量子力学的数学初步 51
  41单粒子的波函数空间 51
  42表象和表象变换 62
  习题 71
  第 5章 量子力学的基本假设 75
  51态及态的叠加原理 75
  52力学量的算符表示 76
  53测不准关系 79
  54运动方程 81
  IV 量子力学
  55全同性粒子体系和交换对称性 84
  习题 89
  第 6章 与时间无关问题的代数研究 92
  61线性谐振子 92
  62 费曼 -海尔曼定理 96
  63刚性转子 100
  64角动量代数研究 103
  65转动和转动不变性 107
  66自旋的角动量 108
  习题 112
  第 7章 中心力场 115
  71径向薛定谔方程 115
  72无限深的球形势阱 117
  73三维各向同性谐振子 118
  74氢原子 120
  75两体问题 126
  习题 129
  第 8章 定态微扰理论 131
  81非简并态微扰理论 131
  82简并态微扰理论 136
  83氢原子的一级斯塔克效应 139
  习题 141
  第 9章 变分法 144
  91变分原理 144
  92谐振子、氢原子和氦原子的变分处理 145
  习题 149
  第 10章 与时间有关的微扰理论 ——量子跃迁 151
  101量子跃迁和跃迁几率 151
  102一级微扰理论 152
  103几种典型微扰下的跃迁几率 155
  104关于能量 -时间测不准关系 158
  105原子对电磁辐射的吸收和发射 159
  106激光原理 165
  习题 167
  第 11章 几个典型的应用 169
  111规范变换 169
  112粒子在均匀磁场中运动——朗道能级 171
  113量子霍尔效应 172
  114均匀磁场中的电子自旋动力学,磁共振 174
  115角动量相加 177
  116塞曼效应 180
  117自旋单态和三重态 184 习题 187
  第 12章 弹性散射 190
  121散射截面 190
  122散射的量子力学描述 191
  123分波法 192
  124光学定理 196
  125方势阱和方势垒所产生的散射 196
  126低能散射 197
  127玻恩近似 200
  128金属粒子的散射 204
  习题 205
  第 13章 全同粒子体系 208
  131两个全同粒子体系 208
  132氦原子 209
  133氢分子 213
  134占有数空间和玻色子的二次量子化 216
  135占有数空间和费米子的二次量子化 218
  习题 220
  习题答案 222
  参考文献 237
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定