边界点 百科内容来自于: 百度百科

计算机中的边界点:
边界点是数据集中一类有着特殊意义的数据对象。它们位于基于密度的簇的边沿区域。边界点处理在数据挖掘技术中有重要意义,它们代表了一类归属并不明确的个体,如果单纯地依靠某种方法把其归类到一个特定的簇中,其效果往往适得其反。边界点不同于孤立点和噪声点。孤立点是一类在统计上处于少数地位的对象,噪声点是一类对统计产生干扰或者偏离一定分布的对象,它们通常位于数据空间的低密区域中,而边界点则不同,它们是数据空间中处于高密区域边沿的一类数据对象,它们的一侧是高密区域,一侧是相对的低密区域。
聚类技术的研究是近几年研究的一个热点,已经提出的许多聚类算法,但是,对聚类边界模式的探讨还不多。聚类的边界点是指位于高密聚类边沿的一类数据对象,它代表了游离在两个或多个类别之间的一类个体对象,其归属并不明确,它们常常具有两个或两个以上的聚类特征。边界点研究有着重要的应用价值。
Chen Xia等提出了聚类边界点检测算法BORDER,其边界点的定义如下:
定义 边界点(Boundary point):一个边界点p是指满足下列两个条件的数据对象:
(1)它位于一个高密的区域IR;
(2)p的附近存在一个区域IR’,Density(IR) >> Density(IR’),或者
Density(IR) << Density(IR’)。
聚类的边界代表了一种潜在的模式,对数据挖掘的着重要的意义。但是目前涉及的边界的算法并不多,对其的研究远远不够。
在DBSCAN算法中,提到边界点(Border Points):一个非核心点对象,如果其落在某核心点的Eps-邻域内,则称之为边界点。一个边界点可能同时落入一个或多个核心点的Eps-邻域。
数学中的边界点:
同济大学高数六版释义:如果点P的任一邻域内既含有属于E的点,又含有不属于E的点,则称P为E的边界点。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定