费马大定理 百科内容来自于: 百度百科

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n _ y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

猜想提出

费马

费马

费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。其中欧拉证明了n=3的情形,用的是唯一因子分解定理;费马自己证明了n=4的情形;1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理;1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧妙工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。对于所有小于100的素指数n 库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。
但对一般情况,在猜想提出的头二百年内数学家们仍对费马大定理一筹莫展。

证明奖励

德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

莫德尔

格尔德·法尔廷斯

格尔德·法尔廷斯

1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈ Q,使得f(xi,yi)=0.后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代数几何的出现,又重新用代数曲线来叙述这个猜想了。
而费马多项式x^n+y^n-1没有奇点,其亏格为(n-1)(n-2)/2。当n≥4时,费马多项式满足猜想的条件。因此,如果莫德尔猜想成立,那么费马大定理中的方程x^n+y^n=z^n本质上最多有有限多个整数解。
1983年,德国数学家法尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇章.法尔廷斯也因此获得1982年菲尔兹奖

谷山丰

谷山丰

谷山丰

1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山—志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。
1985年,德国数学家弗雷指出了谷山——志村猜想”和费马大定理之间的关系;他提出了一个命题:假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。
1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

猜想成立

安德鲁·怀尔斯

安德鲁·怀尔斯

1993年6月,英国数学家安德鲁·怀尔斯宣称证明:对有理数域上的一大类椭圆曲线,“谷山—志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞。怀尔斯不得不努力修复着一个看似简单的漏洞。
怀尔斯和他以前的博士研究生理查德·泰勒用了近一年的时间,用之前一个怀尔斯曾经抛弃过的方法修补了这个漏洞,这部份的证明与岩泽理论有关。这就证明了谷山-志村猜想,从而最终证明了费马大定理。他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。怀尔斯因此获得1998年国际数学家大会的特别荣誉,一个特殊制作的菲尔兹奖银质奖章。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定