直角三角形 百科内容来自于: 百度百科

有一个角为直角的三角形称为直角三角形。在直角三角形中,直角相邻的两条边称为直角边。直角所对的边称为斜边。直角三角形直角所对的边也叫作“弦”。若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。

图示

直角三角形如图所示:分为两种情况,有普通的直角三
角形,还有等腰直角三角形(属于特殊情况)

判定定理

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹亦直角锐角45,斜边上中线角平分线垂线三线合一,等腰直角三角形斜边上的高为外接圆的半径R。
直角三角形是一种特殊的三角形

特殊性质

它除了具有一般三角形性质外,具有一些特殊的性质
性质1:直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
射影定理图 射影定理图
(1)(AD)²=BD·DC。
(2)(AB)²=BD·BC。
(3)(AC)²=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
证明方法多种,下面采取较简单的几何证法。
先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2
∵∠A=30°
∴∠B=60°(直角三角形两锐角互余)
取AB中点D,连接CD,根据直角三角形斜边中线定理可知CD=BD
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)
∴BC=BD=AB/2
再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°
取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)
又∵BC=AB/2
∴BC=CD=BD
∴∠B=60°
∴∠A=30°
性质7:如图,
在Rt△ABC中∠BAC=90°,AD是斜边上的高,则:
证明:S△ABC=1/2*AB*AC=1/2*AD*BC
两边乘以2,再平方得AB²*AC²=AD²*BC²
运用勾股定理,再两边除以
,最终化简即得
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定方法

判定1:有一个角为90°的三角形是直角三角形。
判定2:若
,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于 90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为 负倒数,则两直线互相垂直。那么这个三角形为直角三角形。
判定6:若在一个三角形中一边上的 中线等于其所在边的一半,那么这个三角形为直角三角形。参考直角三角形斜边中线定理
判定7:一个三角形 30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
判定3和7的证明:
已知△ABC中,∠A=30°,∠A,∠C对的边分别为a,c,且a=
c。求证∠C=90°
证法1:
正弦定理,在△ABC中,有a:sinA=c:sinC
将a与c的关系及∠A的度数代入之后化简得sinC=1
又∵0<∠C<180°
∴∠C=90°
证法2
反证法,假设∠ACB≠90°,过B作BD⊥AC于D
在Rt△ABD中,∵∠ADB=90°,∠A=30°
∴BD=
AB(30°的直角边等于斜边的一半)
又∵BC=
AB
∴BC=BD
但BD是B到直线AC的垂线段,根据垂线段最短可知BD<BC,从而出现矛盾。
(或从BC=BD得∠BCD=∠BDC=90°,那么△BCD中就有两个直角,这是不可能的事情)
∴假设不成立,∠ACB=90°
证法3
利用三角形的外接圆证明
作△ABC的外接圆,设圆心为O,连接OC,OB
∵∠BAC=30°,A在圆上
∴∠BOC=60°
∵OB=OC=半径r
∴△BOC是等边三角形,BC=OC=r
又∵AB=2BC=2r
∴AB是直径
∴∠ACB=90°(直径所对的圆周角是直角)
证法4
利用对称的思想
作B关于直线AC对称的点D,连接AD,BD
由对称可得△ABC≌△ADC
∴AB=AD,BC=DC,∠BAD=2∠BAC=60°
∴BD=AB
设BC=k,则AB=2k,CD=k,BD=2k
∵CB+CD=k+k=2k=BD
∴C在BD上(若不共线则与三角形两边之和大于第三边矛盾)
且BC=k=BD/2,即C是BD中点
∴∠ACB=90°(三线合一)

基本简介

等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一个外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边.
等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线.
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.
(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等).
(2)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
(3)三角形的三条高的交点叫做三角形的垂心。
(4)三角形的中位线平行于第三边且等于第三边的二分之一。
注意:
①三角形的内心、重心都在三角形的内部 .
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上。
(直角三角形的垂心为直角顶点,外心为斜边中点。)
④锐角三角形垂心、外心在三角形内部。

相关线段

中线:顶点与对边中点的连线,平分三角形。

勾股定理

如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;; 即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:
,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)

应用举例

如图1,是屋架设计图的一部分,点D是斜梁AB的中点
立柱为BC,DE垂直于横梁AC,AB=7.4m,∠A=30°,求BC、DE要多长?
解:∵DE⊥AC,BC⊥AC,∠A=30°

斜边公式

(一)已知两条直角边的长度 ,可按公式: 计算斜边。
(二)如已知一条直角边和一个锐角,可用直角三角函数计算斜边。
直角三角形ABC的六个元素中除直角C外,其余五个元素有如下关系:
∠A+∠B=90°
sinA=∠A的对边/斜边
cosA=∠A的邻边/斜边
tanA=∠A的对边/∠A的邻边
cotA=∠A的邻边/∠A的对边
例:角A等于30 °,角A的对边是4米,计算斜边C是多少?
查表sin30 °=0.5,斜边C=4/0.5=8米

三角函数

三角函数值除了查表,也可以用电脑系统自带的计算器,计算。
开始——程序——附件——计算器。这个计算器有两种模式,点‘查看’有一个下拉菜单,有标准型和科学型,选择科学型,输入度数后正弦点sin,余弦点cos,正切点tan,值就直接显示出来了。
这里有一个度和度分秒转换的问题。如 18.69度,其中整数18就是18 °,那么18.69-18=0.69,用0.69×60=41.4这里整数41就是41分,再41.4-41=0.4,
再用0.4×60=24这个24就是秒。18.69度=18度41分24秒
也可以用计算器直接转换:输入度数18.69——钩上Hyp——再点dms
就显示出18.4124,这就是18度41分24秒。
如要转换回去就输入18.4124——钩上Inv——再点dms,就转换了。
有一点请注意,显示度分秒时,小数点后面是一位数或三位数如:
15.3; 15.302,应读作15度30分;和15度30分20秒。

解直角三角形

含义:一般地,直角三角形中,除直角外,共有五个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出未知元素的过程,叫做解直角三角形。
1.三条边的关系:
sinA=∠A的对边/斜边
cosA=∠A的邻边/斜边
tanA=∠A的对边/∠A的邻边
2.归纳
利用解直角三角形的知识解决实际问题的一般过程:
  1. 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题)。
  2. 根据条件的特点,适当选用锐角三角形函数等去解直角三角形;
  3. 得到数学问题的答案。
  4. 得到实际问题的答案。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定