电负性 百科内容来自于: 百度百科

元素的原子在化合物中把电子吸引向自己的本领叫做元素的电负性。

定义

电负性(Electronegativity)
又称为相对电负性,简称电负性,也叫电负度。电负性综合考虑了电离能电子亲合能,首先由莱纳斯·卡尔·鲍林于1932年引入电负性的概念,用来表示两个不同原子间形成化学键时吸引电子能力的相对强弱,是元素的原子在分子中吸引共用电子的能力。通常以希腊字母χ为电负性的符号。鲍林给电负性下的定义为“ 电负性是元素的原子在化合物中吸引电子能力的标度”。元素电负性数值越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性数值越小,相应原子在化合物中吸引电子的能力越弱(稀有气体原子除外)。一个物理概念,确立概念和建立标度常常是两回事。同一个物理量,标度不同,数值不同。电负性可以通过多种实验的和理论的方法来建立标度。

计算方法

首先需要说明,电负性是相对值,所以没有单位。而且电负性的计算方法有多种(即采用不同的标度),因而每一种方法的电负性数值都不同,所以利用电负性值时,必须是同一套数值进行比较。比较有代表性的电负性计算方法有3种:
① L.C.鲍林提出的标度。根据热化学数据和分子的键能,指定氟的电负性为4.0,锂的电负性1.0,计算其他元素的相对电负性。
②R.S.密立根从电离势和电子亲合能计算的绝对电负性。
③A.L.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。

常见变化

氟 > 氧 > 氯 > 氮 > 溴 > 碘 > 硫 > 碳
铝>铍>镁>钙>锂>钠>钾

周期变化

氢 2.1 锂1.0 铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 4.0
钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫 2.58 氯 3.16
钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜 1.9 锌 1.65 镓 1.81 锗 2.01 砷 2.18 硒 2.48 溴 2.96
铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金 2.54 铅 2.33
一般来说,周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。
电负性也可以作为判断元素的金属性和非金属性强弱的尺度。一般来说,电负性大于1.8的是非金属元素,小于1.8的是金属元素,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性又有非金属性.

递变规律

1.随着原子序号的递增,元素的电负性呈现周期性变化。
2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。对副族而言,同族元素的电负性也大体呈现这种变化趋势。因此,电负性大的元素集中元素周期表的右上角,电负性小的元素集中在左下角。
3.非金属元素的电负性越大,非金属元素越活泼,金属元素的电负性越小,金属元素越活泼。氟的电负性最大(4.0),是最活泼的非金属元素;钫是电负性最小的元素(0.7),是最活泼的金属元素。
4.过渡元素的电负性值无明显规律。

应用

(1)判断元素的金属性非金属性。一般认为,电负性大于1.8的是非金属元素,小于1.8的是金属元素,在1.8左右的元素既有金属性又有非金属性。
(2)判断化合物中元素化合价的正负。电负性数值小的元素在化合物吸引电子的能力弱,元素的化合价为正值;电负性大的元素在化合物中吸引电子的能力强,元素的化合价为负值。
(3)判断分子的极性和键型。电负性相同的非金属元素化合形成化合物时,形成非极性共价键,其分子都是非极性分子;通常认为,电负性差值小于1.7的两种元素的原子之间形成极性共价键,相应的化合物是共价化合物;电负性差值大于1.7的两种元素化合时,形成离子键,相应的化合物为离子化合物
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定