电能质量 百科内容来自于: 百度百科

电能质量即电力系统中电能的质量。理想的电能应该是完美对称的正弦波。一些因素会使波形偏离对称正弦,由此便产生了电能质量问题。一方面我们研究存在哪些影响因素会导致电能质量问题,一方面我们研究这些因素会导致哪些方面的问题,最后,我们要研究如何消除这些因素,从而最大程度上使电能接近正弦波。

定义

电能质量(Power Quality),从严格意思上讲,衡量电能质量的主要指标有电压、频率和波形。从普遍意义上讲是指优质供电,包括电压质量电流质量供电质量和用电质量。电能质量问题可以定义为:导致用电设备故障或不能正常工作的电压、电流或频率的偏差,其内容包括频率偏差电压偏差、电压波动与闪变三相不平衡、瞬时或暂态过电压、波形畸变(谐波)、电压暂降、中断、暂升以及供电连续性等。

影响因素

在现代电力系统中,电压暂降,暂升和短时中断,谐波产生的电压波形畸变;已成为最重要的电能质量问题。
电能质量监测改善前后对比图 电能质量监测改善前后对比图

具体指标

电网频率

我国电力系统的标称频率为50Hz ,GB/T15945-2008《电能质量 电力系统频率偏差》中规定:电力系统正常运行条件下频率偏差限值为±0.2Hz,当系统容量较小时,偏差限值可放宽到±0.5Hz,标准中没有说明系统容量大小的界限。在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。实际运行中,从全国各大电力系统运行看都保持在不大于±0.1HZ范围内。

电压偏差

GB/T 12325-2008《电能质量 供电电压偏差》中规定:35kV及以上供电电压正、负偏差的绝对值之和不超过标称电压的10%;20kV及以下三相供电电压偏差为标称电压的土7%;220V单相供电电压偏差为标称电压的+7%,-10%。

三相电压不平衡

GB/T15543-2008《电能质量 三相电压不平衡》中规定:电力系统公共连接点电压不平衡度限值为:电网正常运行时,负序电压不平衡度不超过2%,短时不得超过4%;低压系统零序电压限值暂不做规定,但各相电压必须满足GB/T 12325的要求。接于公共连接点的每个用户引起该点负序电压不平衡度允许值一般为1.3%,短时不超过2.6%。

公用电网谐波

GB/T14549--93《电能质量 公用电网谐波》中规定:6~220kV各级公用电网电压(相电压)总谐波畸变率是0.38kV为5.0%,6~10kV为4.0%,35~66kV为3.0%,110kV为2.0%;用户注入电网的谐波电流允许值应保证各级电网谐波电压在限值范围内,所以国标规定各级电网谐波源产生的电压总谐波畸变率是:0.38kV为2.6% , 6~10kV为2.2%,35~66kV为1.9%,110kV为1.5%。对220kV电网及其供电的电力用户参照本标准110kV执行。

公用电网间谐波

GB/T 24337-2009《电能质量 公用电网间谐波》中规定:间谐波电压含有率是1000V及以下<100Hz为0.2%,100~800Hz为0.5%,1000V以上<100Hz为0.16%,100~800Hz为0.4%,800Hz以上处于研究中。单一用户间谐波含有率是1000V及以下<100Hz为0.16%,100~800Hz为0.4%,1000V以上<100Hz为0.13%,100~800Hz为0.32%。

波动和闪变

GB/T 12326-2008《电能质量 电压波动和闪变》规定:电力系统公共连接点,在系统运行的较小方式下,以一周(168h)为测量周期,所有长时间闪变值Plt满足:≤110kV,Plt=1;>110kV,Plt=0.8。以及单个用户的相关规定。

电压暂降与短时中断

GB/T 20137-2013《电能质量 电压暂降与短时中断》定义:电压暂降是指电力系统中某点工频电压方均根值突然降低至0.1p.u.~0.9p.u.,并在短暂持续10ms~1min后恢复正常的现象;短时中断是指电力系统中某点工频电压方均根值突然降低至0.1p.u.以下,并在短暂持续10ms~1min后恢复正常的现象。

指标含义

电压不平衡是指三相电压的幅值或相位不对称。不平衡的程度用不平衡度(电压负序分量和正序分量的方均根值百分比)来表示,典型的三相不平衡是指不平衡度超过2%,短时超过4%。在电力系统中,各种不平衡工业负荷以及各种接地短路故障都会导致三相电压的不平衡。
过电压是指持续时间大于1分钟,幅值大于标称值的电压。典型的过电压值为1.1~1.2倍标称值。过电压主要是由于负载的切除和无功补偿电容器组的投入等过程引起,另外,变压器分接头的不正确设置也是产生过电压的原因。
欠电压是指持续时间大于1分钟,幅值小于标称值的电压。典型的欠电压值为0.8~0.9倍标称值。其产生的原因一般是由于负载的投入和无功补偿电容器组的切除等过程。另外,变压器分接头的错误设置也是欠电压产生的原因。
电压骤降是指在工频下,电压的有效值短时间内下降。典型的电压骤降值为0.1~0.9倍标称值,持续时间为0.5个周期到1分钟。电压骤降产生的原因主要有电力系统发生故障,如系统发生接地短路故障;大容量电机的启动和负载突增也会导致电压骤降。
电压骤升是指在工频下,电压的有效值短时间内上升。典型的电压骤升值为1.1~1.8倍标称值,持续时间为0.5个周期到1分钟。电压骤升产生的原因主要有电力系统发生故障,如系统发生单相接地等故障;大容量电机的停止和负载突降也是电压骤升的重要原因。
供电中断是指在一段时间内,系统的一相或多相电压低于0.1倍标称值。瞬时中断定义为持续时间在0.5个周期到3秒之间的供电中断,短时中断的持续时间在3~60 秒之间,而持久停电的持续时间大于60秒。
电压瞬变又称为瞬时脉冲或突波,是指两个连续的稳态之间的电压值发生快速的变化,其持续时间很短。电压瞬变按照电压波形的不同分为两类:一是电压瞬时脉冲,是指叠加在稳态电压上的任一单方向变动的电压非工频分量;二是电压瞬时振荡,是指叠加在稳态电压的同时包括两个方向变动的电压非工频分量。电压瞬变可能是由闪电引起的,也可能是由于投切电容器组等操作产生的开关瞬变。
电压切痕是一种持续时间小于10ms的周期性电压扰动。它是由于电力电子装置换相造成的,它使电压波形在一个周期内有超过两个的过零点。由于其频率非常高,用常规的谐波分析设备无法测出,因此以前一直末把此项作为电压质量的一个指标。

改善措施

(1) 改善用电功率因数,使无功就地平衡。
(2) 合理选择供电半径.
(3) 合理选择供电系统线路的导线截面。
(4) 合理配置变、配电设备,防止其过负荷运行。
(5) 适当选用调压措施,如串联补偿、变压器加装有载调压装置、安装同期调相机或静电电容器等。
供电电压超过允许偏差的原因有哪些?
(1) 供电距离超过合理的供电半径。
(2) 供电导线截面选择不当,电压损失过大。
(3) 线路过负荷运行。
(4) 用电功率因数过低,无功电流大,加大了电压损失。
(5) 冲击性负荷、非对称性负荷的影响。
(6) 调压措施缺乏或使用不当,如变压器分头摆放位置不当等。
(7) 用电单位装用的静电电容器补偿功率因数没采用自动补偿。
总之,无功电能的余、缺状况是影响供电电压偏差的重要因素。传统的电能质量测试手段存在着局限性。海亿达能源科技研发EPDS™智能配电系统即电能质量监测改善系统,建立了遍及全网的电能质量在线监测网,以及一套统一开放的监控和管理平台,动态监测电网电能质量水平,进而针对严重影响电网电能质量的干扰性负荷进行改造,有效地提高了电能质量管理水平。也是利用现代测量控制技术和数据处理与通讯技术,在经济合理的成本下实现对用户端包括电源进线到终端用电设备在内的全部配电用电系统设施的管理控制,大幅提高配电用电系统与设施的运行与管理效率,降低运营成本。

图书信息

书名:电能质量
作者:程浩忠
定价:53元
出版日期:2006-10-1
出版社:清华大学出版社

内容简介

本书共分9章,分别论述了电能质量的基本概念、电力系统电压偏差、电力系统频率偏差、电力系统谐波、电压波动与闪变、电力系统三相不平衡、暂态过电压和瞬态过电压、配电系统可靠性、电压跌落。只要具有电力系统分析知识的读者都能顺利阅读并理解本书的内容。本书可作为电气工程、电力系统专业工程硕士研究生的教材,也可作为电力工程类专业高年级本科生和研究生学习电能质量的教材,还可作为从事电能质量工作的工程技术人员和技术管理人员的专业培训教材或参考书。

目录

第1章电能质量的基本概念/1
1.1电能质量的主要内容2
1.2关于电磁干扰和电能质量的分类3
1.2.1IEC关于电磁干扰及其对电能质量影响的分类3
1.2.2IEEE关于电磁现象和电能质量的分类3
1.2.3根据电能质量及电磁干扰现象特征的分类5
1.3中国电能质量标准与主要内容5
1.3.1电能质量标准化5
1.3.2电能质量国家标准简介7
1.3.3电力系统频率9
1.3.4供电电压允许偏差9
1.3.5三相电压不平衡度9
1.3.6电压波动和闪变10
1.3.7公用电网谐波10
1.3.8暂时过电压和瞬态过电压11
1.4关于电能质量的一些概念12
1.5动态电能质量15
1.6IEEE电压容限曲线及分类16
1.6.1电压容限曲线16
1.6.2ITIC曲线17
1.6.3IEEE Std.1159—1995 中的有关定义18
1.7电能质量的研究概况19
1.7.1电能质量定义20
1.7.2电能质量问题起因21
1.7.3电能质量研究意义21
1.7.4电能质量特点22
1.7.5电能质量分析方法23
1.7.6电能质量标准26
参考文献27
第2章电力系统电压偏差/31
2.1电压偏差的国家标准31
2.1.1中国国家标准 GB 12325-199031
2.1.2国外电压偏差的标准32
2.2电压偏差超标的危害33
2.2.1电压偏差对用电设备的影响33
2.2.2电压偏差对电力系统稳定和经济运行的影响39
2.3电力系统电压调整47
2.3.1有功、无功功率传输对电压水平的影响47
2.3.2负荷无功功率与电压水平的关系49
2.3.3电力系统电压调整50
2.3.4无功电压的自动控制60
2.4电力系统无功潮流62
2.4.1无功电源的优化62
2.4.2无功潮流优化的模型及算法65
2.4.3电网电压调整标准74
2.4.4无功补偿规划原则76
2.4.5无功补偿容量的配置78
2.5无功和电压管理80
2.5.1无功和电压管理的目标和方法80
2.5.2电压监测点和中枢点的选择81
2.5.3电力系统的电压监测82
2.5.4电压偏差的统计考核84
2.5.5无功功率补偿设备的运行和管理85
参考文献86
第3章电力系统频率偏差/87
3.1电力系统频率概念87
3.1.1频率偏差87
3.1.2频率的基本属性87
3.1.3电力系统频率、电源频率和负荷节点频率88
3.1.4频率波动89
3.1.5电力系统的频率特性89
3.1.6频率突然下降及崩溃93
3.1.7频率与电压的关系95
3.2频率偏差对电力系统的影响96
3.2.1影响频率的因素96
3.2.2系统低频率运行对水电厂的影响97
3.2.3系统低频率运行对火电厂的影响98
3.2.4系统低频率运行对负荷的影响100
3.2.5冲击负荷引起的电力系统频率波动108
3.2.6电力系统高频率运行的危害109
3.3电力系统频率的检测与评价110
3.3.1电力系统频率的4种运行工况110
3.3.2电力系统的动态频率112
3.3.3电力系统频率的检测113
3.3.4电力系统频率的评价113
3.4电力系统频率偏差的标准和规定114
3.4.1国内外有关的标准和规定115
3.4.2频率偏差标准和规定的讨论119
3.5电力系统频率调整120
3.5.1频率的一次调整120
3.5.2频率的二次调整122
3.5.3调频厂的选择125
参考文献127
第4章电力系统谐波/128
4.1电力系统谐波的基本概念128
4.1.1电力系统中正弦波形129
4.1.2谐波的定义和性质129
4.1.3非正弦波形的有效值和畸变率132
4.1.4特征谐波和非特征谐波134
4.1.5谐波和非特征谐波135
4.1.6谐波计算的等值电路参数135
4.2电力系统非正弦波形的分析方法136
4.2.1非正弦波形及其频域分解136
4.2.2非正弦电路的电压和电流142
4.2.3非正弦电路的功率和功率因数145
4.2.4非正弦波形有功功率、无功功率的时域定义150
4.3电力系统谐波的来源152
4.3.1发电机和电动机152
4.3.2变压器和电抗器154
4.3.3电弧的非线性伏安特性158
4.3.4整流换流装置159
4.3.5电力机车161
4.3.6家用电器163
4.4电力系统谐波潮流计算163
4.4.1电网各元件等值电路的谐波参数164
4.4.2对称系统的谐波潮流计算167
4.4.3谐波潮流的简化计算法168
4.5电力系统谐波测量技术171
4.5.1概述171
4.5.2非正弦周期信号的采样172
4.5.3非正弦波形下常用电量的测量173
4.5.4谐波阻抗的测量184
4.5.5对电压互感器与电流互感器的要求189
4.6谐波对电网的影响和危害191
4.6.1谐波对电网的影响192
4.6.2谐波对高压设备的影响193
4.6.3谐波对低压用电设备的影响196
4.6.4谐波对继电保护的影响和危害200
4.6.5谐波对远动自动装置的影响202
4.6.6谐波对通信线路的干扰203
4.7电力系统谐波的抑制204
4.7.1减少谐波源的谐波含量204
4.7.2在电容器回路串接电抗器207
4.7.3安装交流滤波器208
4.7.4采用有源滤波器209
4.7.5加大供电系统容量和合理选择供电电压210
4.7.6采用相数倍增法211
4.7.7谐波对并联电容器的影响211
4.7.8电力电容器组的谐波过载能力215
4.7.9电容器对系统谐波阻抗的影响217
4.7.10并联电容器对谐波电流的放大作用217
4.7.11电容器的无功补偿方案219
4.8交流滤波装置219
4.8.1滤波装置接线方式和滤波方案219
4.8.2滤波器的滤波效益221
4.8.3单调谐滤波器222
4.8.4高通滤波器226
4.8.5滤波装置参数选择的条件229
4.9谐波对电能计量的影响231
4.9.1引言231
4.9.2电能表的分类231
4.9.3电能表运行原理232
4.9.4谐波引起电能表误差的分析233
4.9.5计量误差的改进措施及相关标准237
4.10电力系统谐波的标准及其管理238
4.10.1国外的谐波标准238
4.10.2国内公用电网谐波管理的标准242
4.10.3家用和低压电器的谐波限制标准243
4.10.4对谐波的管理245
4.10.5电力系统谐波的监测246
参考文献248
第5章电压波动与闪变/251
5.1电压波动与闪变的基本概念251
5.1.1电压波动251
5.1.2闪变252
5.1.3灯—眼—脑模型255
5.1.4电压波动和闪变的危害256
5.2电压波动和闪变的标准257
5.2.1电压波动和闪变的国家标准257
5.2.2我国新老标准以及与国际标准的比较259
5.3电压波动和闪变的测量260
5.3.1电压波动的检测方法261
5.3.2IEC闪变检测方法265
5.3.3不同类型的闪变仪269
5.4电压波动和闪变的产生和抑制275
5.4.1电压波动的产生275
5.4.2电压闪变的产生277
5.4.3电压波动的抑制279
参考文献288
第6章电力系统三相不平衡/290
6.1三相不平衡的概念及计算290
6.1.1三相不平衡的概念及表达式290
6.1.2三相不平衡的计算294
6.2三相不平衡的标准及测量299
6.2.1三相不平衡的国家标准299
6.2.2三相不平衡的测量仪器301
6.3三相不平衡的危害及改善措施304
6.3.1三相不平衡的危害304
6.3.2三相不平衡的改善措施308
参考文献312
第7章暂时过电压和瞬态过电压/313
7.1暂时过电压和瞬态过电压的概念313
7.1.1电力系统过电压的定义和分类313
7.1.2电力系统过电压与绝缘配合315
7.2工频过电压的机理与限制319
7.2.1空载线路的电容效应与限制方法319
7.2.2单相接地时的工频电压升高322
7.2.3甩负荷引起的工频电压升高323
7.3谐振过电压的机理与限制325
7.3.1线性谐振325
7.3.2铁磁谐振329
7.3.3参数谐振340
7.4操作过电压的机理与限制344
7.4.1概述344
7.4.2单频振荡回路的过渡过程344
7.4.3空载线路的合闸和重合闸过电压348
7.4.4空载线路的拉闸过电压350
7.5雷电过电压的保护354
参考文献354
第8章配电系统可靠性/355
8.1配电系统可靠性355
8.1.1配电系统可靠性的概念355
8.1.2配电系统可靠性工作的重要性355
8.1.3配电系统供电可靠性的概念356
8.1.4供电可靠性评价指标与计算公式357
8.1.5可靠性统计的有关规定361
8.2配电系统可靠性准则364
8.2.1电力系统可靠性准则364
8.2.2配电系统可靠性准则366
8.3我国城市电力网可靠性的规定366
8.3.1概述366
8.3.2城市电力网对可靠性的一般要求367
8.3.3城市电力网可靠性标准368
8.3.4城市电力网可靠性应用370
8.4以元件组合关系为基础的配电系统可靠性预测方法373
8.4.1配电系统可靠性预测评估指标374
8.4.2简单放射状网络的评价377
8.4.3复杂网络的评价383
8.5配电系统缺电和停电损失的计算389
8.6配电系统可靠性经济评价391
8.6.1经济评价的原则391
8.6.2常用的可靠性经济评价方法391
8.7提高配电系统可靠性的措施393
8.7.1防止故障的措施393
8.7.2改善系统可靠度的措施396
8.7.3加速故障探测及故障修复397
8.8提高配电系统可靠性措施实施效果的计算399
8.8.1提高配电系统可靠性措施的效果分析399
8.8.2提高可靠度措施效果分布的计算方法400
参考文献402
第9章电压跌落/403
9.1电压跌落概述403
9.1.1电压跌落的相关概念403
9.1.2电压跌落的原因404
9.1.3电压跌落的研究现状404
9.2电压跌落的危害性405
9.2.1概述405
9.2.2电压跌落对计算机及电子设备的影响406
9.2.3电压跌落对交流驱动设备的影响410
9.3电压跌落的标准421
9.4电压跌落值的测量和计算422
9.4.1电压跌落幅值计算的基本方法422
9.4.2同时计算电压跌落幅值和相位跳变的算法423
9.4.3电压跌落持续时间的测量425
9.5抑制电压跌落的措施426
9.5.1概述426
9.5.2动态补偿技术428
9.5.3动态电能质量调节装置介绍431
参考文献432
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定