呼吸链 百科内容来自于: 百度百科

呼吸链(respiratory chain)是由一系列的递氢反应(hydrogen transfer reactions)和递电子反应(eletron transfer reactions)按一定的顺序排列所组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成。实际上呼吸链的作用代表着线粒体最基本的功能,呼吸链中的递氢体(hydrogen carrier)和递电子体(electron carrier)就是能传递氢原子或电子的载体,由于氢原子可以看作是由质子和核外电子组成的,所以递氢体也是递电子体,递氢体和递电子体的本质是酶、辅酶、辅基或辅因子。

定义

呼吸链又称电子传递链,是由一系列电子载体构成的,从NADH或FADH2向氧传递电子的系统
还原型辅酶通过呼吸链再氧化的过程称为电子传递过程。其中的氢以质子形式脱下,电子沿呼吸链转移到分子氧,形成粒子型氧,再与质子结合生成水。放出的能量则使ADP和磷酸生成ATP。电子传递和ATP形成的偶联机制称为氧化磷酸化作用。整个过程称为氧化呼吸链呼吸代谢
葡萄糖分解代谢中,一分子葡萄糖共生成10个NADH和2个FADH2,其标准生成自由能是613千卡,而在燃烧时可放出686千卡热量,即90%贮存在还原型辅酶中。呼吸链使这些能量逐步
呼吸链 呼吸链
释放,有利于形成ATP和维持跨膜电势。
原核细胞的呼吸链位于质膜上,真核细胞则位于线粒体内膜上。

构成

呼吸链包含15种以上组分,主要由4种酶复合体和2种可移动电子载体构成。其中复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、辅酶Q细胞色素C的数量比为1:2:3:7:63:9。
1.复合体Ⅰ 即NADH:辅酶Q氧化还原酶复合体,由NADH脱氢酶(一种以FMN为辅基的黄素蛋白)和一系列铁硫蛋白(铁—硫中心)组成。它从NADH得到两个电子,经铁硫蛋白传递给辅酶Q。铁硫蛋白含有非血红素铁和酸不稳定硫,其铁与肽类半胱氨酸的硫原子配位结合。铁的价态变化使电子从FMNH2转移到辅酶Q。
2.复合体Ⅱ 由琥珀酸脱氢酶(一种以FAD为辅基的黄素蛋白)和一种铁硫蛋白组成,将从琥珀酸得到的电子传递给辅酶Q。
3.辅酶Q 是呼吸链中唯一的非蛋白氧化还原载体,可在膜中迅速移动。它在电子传递链中处于中心地位,可接受各种黄素酶类脱下的氢。
呼吸链 呼吸链
复合体Ⅲ 辅酶Q:细胞色素C氧化还原酶复合体,是细胞色素和铁硫蛋白的复合体,把来自辅酶Q的电子,依次传递给结合在线粒体内膜外表面的细胞色素C。
细胞色素类 都以血红素为辅基,红色或褐色。将电子从辅酶Q传递到氧。根据吸收光谱,可分为三类:a,b,c。呼吸链中至少有5种:b、c1、c、a、a3(按电子传递顺序)。细胞色素aa3以复合物形式存在,又称细胞色素氧化酶,是最后一个载体,将电子直接传递给氧。从a传递到a3的是两个铜原子,有价态变化。
复合体IV:细胞色素C氧化酶复合体。将电子传递给氧。

相关分类

辅酶

构成呼吸链的递氢体递电子体主要分为以下五类
(一)尼克酰胺腺嘌呤二核苷酸(NAD+)或称辅酶I(CoI)。
为体内很多脱氢酶的辅酶,是连接作用物与呼吸链的重要环节,分子中除含尼克酰胺(维生素PP)外,还含有核糖、磷酸及一分子腺苷酸(AMP)。
NAD+的主要功能是接受从代谢物上脱下的2H(2H++2e),然后传给另一传递体黄素蛋白
在生理pH条件下,尼克酰胺中的氮(吡啶氮)为五价的氮,它能可逆地接受电子而成为三价氮,与氮对位的碳也较活泼,能可逆地加氢还原,故可将NAD+视为递氢体。反应时,NAD+的尼克酰胺部分可接受一个氢原子及一个电子,尚有一个质子(H+)留在介质中。
此外,亦有不少脱氢酶的辅酶为尼克酰胺腺嘌呤二核苷酸磷酸(NADP+),又称辅酶Ⅱ(CoⅡ),它与NAD+不同之处是在腺苷酸部分中核糖的2′位碳上羟基的氢被磷酸基取代而成。
当此类酶催化代谢物脱氢后,其辅酶NADP+接受氢而被还原生成NADPH+H+,它须经吡啶核苷酸转氢酶(pyridine nucleotide transhydrogenase)作用将还原当量转移给NAD+,然后再经呼吸链传递,但NADPH+H+一般是为合成代谢或羟化反应提供氢。
呼吸链中五种酶复合体 呼吸链中五种酶复合体

黄素蛋白

(二)黄素蛋白(flavoproteins)
黄素蛋白种类很多,其辅基有两种,一种为黄素单核苷酸(FMN),另一种为黄素腺嘌呤二核苷酸(FAD),两者均含核黄素(维生素B2),此外FMN尚含一分子磷酸,而FAD则比FMN多含一分子腺苷酸(AMP)。
在FAD、FMN分子中的异咯嗪部分可以进行可逆的脱氢加氢反应。
呼吸链 呼吸链
FAD或FMN与酶蛋白部分之间是通过非共价键相连,但结合牢固,因此氧化与还原(即电子的失与得)都在同一个酶蛋白上进行,故黄素核苷酸氧化还原电位取决于和它们结合的蛋白质,所以有关的标准还原电位指的是特定的黄素蛋白,而不是游离的FMN或FAD;在电子转移反应中它们只是在黄素蛋白的活性中心部分,而其本身不能作为作用物或产物,这和NAD+不同,NAD+与酶蛋白结合疏松,当与某酶蛋白结合时可以从代谢物接受氢,而被还原为NADH,后者可以游离,再与另一种酶蛋白结合,释放氢后又被氧化为NAD+。
多数黄素蛋白参与呼吸链组成,与电子转移有关,如NADH脱氢酶(NADh dehydrogenase)以FMN为辅基,是呼吸链的组分之一,介于NADH与其它电子传递体之间;琥珀酸脱氢酶线粒体内的甘油磷酸脱氢酶(glycerol phosphate dehydrogenase)的辅基为FAD,它们可直接从作用物转移还原当量H++e reducing equivalent)到呼吸链,此外脂肪酰CoA脱氢酶与琥珀酸脱氢酶相似,亦属于FAD为辅基的黄素蛋白类,也能将还原当量从作用物传递进入呼吸链,但中间尚需另一电子传递体称为电子转移黄素蛋白,辅基为FAD)参与才能完成。

铁硫蛋白

(三)铁硫蛋白(iron?sulfur proteins,Fe-S)
又称铁硫中心,其特点是含铁原子。铁是与无机硫原子或是蛋白质肽链上半胱氨酸残基的硫相结合,常见的铁硫蛋白有三种组合方式(a)单个铁原子与4个半胱氨酸残基上的巯基硫相连。(b)两个铁原子、两个无机硫原子组成(2Fe-2S),其中每个铁原子还各与两个半胱氨酸残基的巯基硫相结合。(c)由4个铁原子与4个无机硫原子相连(4Fe?4S),铁与硫相间排列在一个正六面体的8个顶角端;此外4个铁原子还各与一个半胱氨酸残基上的巯基硫相连。
(a)单个铁与半胱氨酸硫相连 (b)2Fe-2S (c)4Fe-4S
铁硫蛋白中的铁可以呈两价(还原型),也可呈三价(氧化型),由于铁的氧化、还原而达到传递电子作用。
在呼吸链中它多与黄素蛋白细胞色素b结合存在。

泛醌

(四)泛醌(ubiquinone,UQ或Q)
亦称辅酶Q(coenzyme Q),为一脂溶性苯醌,带有一很长的侧链,是由多个异戊二烯(isoprene)单位构成的,不同来源的泛醌其异戊二烯单位的数目不同,在哺乳类动物组织中最多见的泛醌其侧链由10个
呼吸链 呼吸链
异戊二烯单位组成。
泛醌接受一个电子和一个质子还原成半醌,再接受一个电子和质子则还原成二氢泛醌,后者又可脱去电子和质子而被氧化恢复为泛醌。

细胞色素体系

(五)细胞色素体系
1926年Keilin首次使用分光镜观察昆虫飞翔肌振动时,发现有特殊的吸收光谱,因此把细胞内的吸光物质定名为细胞色素细胞色素是一类含有铁卟啉辅基色蛋白,属于递电子体线粒体内膜中有细胞色素b、c1、c、aa3,肝、肾等组织的微粒体中有细胞色素P450。细胞色素b、c1、c为红色细胞素,细胞色素aa3为绿色细胞素。不同的细胞色素具有不同的吸收光谱,不但其酶蛋白结构不同,辅基的结构也有一些差异。
细胞色素c为一外周蛋白,位于线粒体内膜的外侧。细胞色素C比较容易分离提纯,其结构已清楚。哺乳动物的Cyt c由104个氨基酸残基组成,并从进化的角度作了许多研究。Cyt c的辅基血红素(亚铁原卟啉)通过共价键(硫醚键)与酶蛋白相连(见右上图),其余各种细胞色素中辅基与酶蛋白均通过非共价键结合。
细胞色素C的辅基与酶蛋白的联接方式
细胞色素a和a3不易分开,统称为细胞色素aa3。和细胞色素P450、b、c1、c不同,细胞色素aa3的辅基不是血红素,而是血红素A(见图6?)。细胞色素aa3可将电子直接传递给氧,因此又称为细胞色素氧化酶
呼吸链 呼吸链
卟啉辅基所含Fe2+可有Fe2+←→Fe3++e的互变,因此起到传递电子的作用。铁原子可以和酶蛋白卟啉环形成6个配位键。细胞色素aa3和P?450辅基中的铁原子只形成5个配位键,还能与氧再形成一个配位键,将电子直接传递给氧,也可与CO、氰化物、H2S或叠氮化合物形成一个配位键。细胞色素aa3与氰化物结合就阻断了整个呼吸链的电子传递,引起氰化物中毒。

抑制剂

1.鱼藤酮、安密妥、杀粉蝶菌素:阻断电子从NADH到辅酶Q的传递。鱼藤酮是极毒的植物物质,可作杀虫剂。
2.抗霉素A:从链霉素分离出的抗生素,抑制从细胞色素b到c1的传递。
3.氰化物、叠氮化物、CO、H2S等,阻断由细胞色素aa3到氧的传递。
呼吸链中的NADH和NADPH的区别
NADH主要用于糖酵解和细胞呼吸作用中的柠檬酸循环。
呼吸链与电子传递 呼吸链与电子传递
NADPH主要在磷酸戊糖途径中产生,它主要中来合成核酸和脂肪酸

区别

NADH主要用于糖酵解和细胞呼吸作用中的柠檬酸循环。
NADPH主要在磷酸戊糖途径中产生,它主要中来合成核酸和脂肪酸
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定