几何原本 百科内容来自于: 百度百科

《几何原本》(希腊语:Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是欧几里得几何的基础,在西方是仅次于《圣经》而流传最广的书籍。

简介

古希腊数学家欧几里得是与他的巨著——《原本》一起名垂千古的。在《原本》里,欧几里得系统地总结了古
封面,陕西科学技术出版社,2003年

封面,陕西科学技术出版社,2003年

代劳动人民和学者们在实践和思考中获得的几何知识,并把人们公认的一些事实列成定义公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。
欧几里得所著的《原本》大约成书于公元前300年,原书早已失传,如今见到的《几何原本》是经过后来的数学家们修改过的,而且有的包含13卷,有的包含15卷,书中大部分内容有关图形的知识(即几何知识)。
两千多年来,《几何原本》一直是学习数学几何部分的主要教材。哥白尼伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
1582年,意大利人利玛窦到中国传教,带来了15卷本的《原本》。1600年,明代数学家徐光启(1562-
《几何原本》 1573版

《几何原本》 1573版

1633)与利玛窦相识后,便经常来往。1607年,他们把该书的前6卷平面几何部分合译成中文,并改名为《几何原本》。后9卷是1857年由中国清代数学家李善兰(1811-1882)和英国人伟烈亚力译完的。
《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。《几何原本》第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是著名的平行公设),
这些定义、公理、公设就是《几何原本》全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。
欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科
但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材
它已成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而做出了伟大的贡献。
物理学家爱因斯坦精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对性原理光速不变原理

定义

注:《几何原本》中有“公设”与“公理”之分,近代数学对此不再区分,都称“公理”。
23条定义
1. 点是没有部分的
2.线只有长度而没有宽度
3.一线的两端是点
4.直线是它上面的点一样地平放着的线
5.面只有长度和宽度
6.面的边缘是线
7.平面是它上面的线一样地平放着的面
8. 平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度.
9. 当包含角的两条线都是直线时,这个角叫做直线角.
10. 当一条直线和另一条直线交成邻角彼此相等时,这些角的每一个叫做直角,而且称这一条直线垂直于另一条直线。
11. 大于直角的角叫钝角。
12. 小于直角的角叫锐角
13. 边界是物体的边缘
14. 图形是一个边界或者几个边界所围成的
15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等。
16. 这个点(指定义15中提到的那个点)叫做圆心。
17. 圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,且把圆二等分。
18.半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同。(暂无注释,可能是接着17的)
19.直线形是由线段围成的,三边形是由三条线段围成的,四边形是由四条线围成的,多边形是由四条以上线段围成的。
20.在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形.
21.此外,在三边形中,有一角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;有三个角是锐角的,叫做锐角三角形。
22.在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形.
23.平行直线是在同一个平面内向两端无限延长不能相交的直线.
五条公理
1.等于同量的量彼此相等;
2.等量加等量,其和相等;
3.等量减等量,其差相等;
4.彼此能重合的物体是全等的;
5.整体大于部分。
五条公设
1.过两点能作且只能作一直线;
2.线段(有限直线)可以无限地延长;
3.以任一点为圆心,任意长为半径,可作一圆;
4.凡是直角都相等;
5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。(近代数学不区分公设,公理,统一称为公理)
——以上选自《几何原本》 第一卷《几何基础
最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。值得注意的是,第五公设既不能说是正确也不能说是错误,它所概括的是一种情况。非欧几何则在推翻第五公设的前提下进行了另外情况的讨论。

主要内容

欧几里得的《几何原本》共有十三卷。
徐光启翻译的《几何原本》第一卷影印本书影

徐光启翻译的《几何原本》第一卷影印本书影

目录
第一卷 几何基础
第二卷 几何与代数
第三卷圆与角
第四卷圆与正多边形
第五卷比例
第六卷相似
第七卷 初等几何数论(一)
第八卷 初等几何数论(二)
第九卷 初等几何数论(三)
第十卷无理
第十一卷立体几何
第十二卷立体测量
第十三卷正多面体
各卷简介
第一卷:几何基础。重点内容有三角形全等的条件(全等三角形判定定理),三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理(又称毕氏定理)的正逆定理;
第二卷几何代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理
第三卷阐述圆,弦,切线割线圆心角圆周角的一些定理。
第五卷讨论比例理论,多数是继承欧多克斯的比例理论,被认为是"最重要的数学杰作之一"。
第六卷:相似多边形理论,并以此阐述了比例的性质。
第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理(与给定的量不可通约),其中第一命题极限思想的雏形。
第十一卷、十二、十三卷:最后讲述立体几何的内容以及立体几何的相关体积侧面积表面积计算与证明。
《几何原本》徐光启译第一卷证明毕氏定理

《几何原本》徐光启译第一卷证明毕氏定理

从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。

意义影响

在几何学上的影响和意义
在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这
欧几里得

欧几里得

种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了在西方是欧几里德最先发现的勾股定理,从而说明了欧洲是西方最早发现勾股定理的大洲。(中国发现勾股定理的是商高,时间为公元前1120年,比欧洲早约八百余年。)
论证方法上的影响
关于几何论证的方法,欧几里得提出了分析法综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法
作为教材的影响
欧几里得发表《几何原本》到如今,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
古希腊的建筑之美

古希腊的建筑之美

(牛顿的例子)
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
《原本》的缺憾
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
亚历山大城的地形图

亚历山大城的地形图

古希腊雕塑·醉婆

古希腊雕塑·醉婆

传播情况

《几何原本》最初是手抄本,以后译成了世界各种文字,它的发行量仅次于《圣经》而位居第二。19世纪初,法国数学家勒让德,把欧几里德的原作,用现代语言写成了几何课本,成为现今通用的几何学教本。
中国最早的译本是1607年意大利传教士利玛窦(Matteo Ricci,1552-1610)和徐光启根据德国人克拉校订增补拉丁文本《欧几里得原本》(15卷)合的,定名为《几何原本》,几何的中文名称就是由此而得来的。该译本第一次把欧几里德几何学及其严密的逻辑体系和推理方法引入中国,同时确定了许多我们如今耳熟能详的几何学名词,如点、直线、平面、相似、外似等。他们只翻译了前6卷,后9卷由英国人伟烈亚力和中国科学家李善兰在1857年译出。

传入中国

前六卷的翻译工作

《几何原本》传入中国,首先应归功于明末科学家徐光启。
徐光启

徐光启

徐光启(1562~1633),字子先,上海吴淞人。他在加强国防、发展农业、兴修水利、修改历法等方面都有相当的贡献,对引进西方数学和历法更是不遗余力。他认识意大利传教士利玛窦之后,决定一起翻译西方科学著作。利玛窦主张先译天文历法书籍,以求得天子的赏识。但徐光启坚持按逻辑顺序,先译《几何原本》。
对徐光启而言,《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。这种区别于中国传统数学的特点,徐光启有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
他们于1606年完成前6卷的翻译,1607年在北京印刷发行。

徐光启翻译中的重要贡献

徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。“几何”的原文是“geometria”,徐光启和利玛窦在翻译时,取“geo”的音为“几何”,而“几何”二字中文原意又有“衡量大小”的意思。用“几何”译“geometria”,音义兼顾,确是神来之笔。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡日本等国,影响深远。

后9卷的翻译工作

就在他们想继续把《几何原本》的后9卷翻译完的时候,发生了一件意想不到的事情,就是徐光启的父亲不幸去世了。徐父去世的准确日子是如今。当时徐光启尽管已经入教,但作为一名一直在传统文化熏陶下成长起来的封建时代的知识分子,他还做不到那么超脱,所以,他不得不开始忙于一系列繁杂的丧事。丧事差不多了,到了8月初,徐光启请了假,便扶柩回了上海。这一去就是三年。
徐光启、利玛窦翻译的《几何原本》

徐光启、利玛窦翻译的《几何原本》

此时利玛窦一直在北京,中间的确为《几何原本》的事情他们曾经联系过一次,但那次主要是让徐光启想办法在南方刊印。此后,他们再没联系。三年后,即1610年5月11日,利玛窦去世了。而徐光启到了12月15日才回到北京。此时利玛窦已于11月1日下葬。所以他们从1607年8月之后,再也未曾谋过面。
徐光启于1611年夏天在修订利玛窦留下的《几何原本》前六卷手稿时写下了明显含有不再续译《几何原本》后九卷内容意义的话,通过前面的分析,我们认为,并非由于当时《几何原本》前六卷无人注意或没有用处,而是由于当时的环境与以前大不相同了。龙华民执掌耶稣会之后,禁止传教士向中国人传授西方科技,很大程度上束缚了西方传教士与中国人的接触和交流。另外,与徐光启比较熟悉的两位神父庞迪我熊三拔并不谙熟《几何原本》内容,其数学水平与利玛窦相去甚远,这两方面的因素综合起来,是使徐光启感慨太息,决定停止续译的根本原因。
就因为这个意外,使《几何原本》的后9卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。
徐光启《几何原本》第一卷书影

徐光启《几何原本》第一卷书影

李善兰(1811~1882),字壬叔,号秋纫,浙江海宁人,自幼喜欢数学。1852年到上海后,李善兰与伟烈亚力相约,继续完成徐光启、利玛窦未完成的事业,合作翻译《几何原本》后9卷,并与1856年完成此项工作。
至此,欧几里得的这一伟大著作第一次完整地引入中国,对中国近代数学的发展起到了重要的作用。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大
李善兰

李善兰

所获评价

徐光启在评论《几何原本》时说过:“此书为益能令学理者祛其浮气,练其精心;学事者资其定法,发其巧思,故举世无一人不当学。”其大意是:读《几何原本》的好处在于能去掉浮夸之气,练就精思的习惯,会按一定的法则,培养巧妙的思考。所以全世界人人都要学习几何。徐光启同时也说过:“能精此书者,无一事不可精;好学此书者,无一事不可学。”
《几何原本》

《几何原本》

爱因斯坦更是认为:“如果欧几里得未激发你少年时代的科学热情,那你肯定不是天才科学家。”
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定