莫比乌斯环 百科内容来自于: 百度百科

发现命名

公元1858年,两名德国数学家莫比乌斯和Johann Benedict Listing分别发现,一个扭转180度后再两头粘接起来的纸条,具有魔术般的性质。与普通纸带具有两个面(双侧曲面)不同,这样的纸带只有一个面(单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!这一神奇的单面纸带被称为“莫比乌斯带”(Möbius strip) [1]  
作为一种典型的 拓扑图形,莫比乌斯带引起了许多科学家的研究兴趣,并在生活和生产中有了一些应用。例如,动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。此外,莫比乌斯带也是艺术家眼中的经典造型 [1]  
科学家认为,当具有可展表面(developable surface)的莫比乌斯带被折成之后,它要尽力达到具有最小弹性能量的状态。从20世纪30年代开始,一个关于莫比乌斯带的力学问题就始终困扰着 科学家,即如何预测它的 三维空间结构。在新的研究中,来自英国 伦敦大学学院的非线性动力学家Gert van der Heijden和Eugene Starostin利用一组20年未发表的数学方程,解开了这一长达75年的难题 [1]  

制作方法

拿一张白的长纸条,把一面涂成黑色,然后把其中一端扭转180°,再把两端连上,就成为一个莫比乌斯带。
我们把一个 莫比乌斯环沿中线剪开。剪开后,居然没有一分为二,而是变成了一个大环。将莫比乌斯纸环沿着三等分线剪开,会在剪完2个圈后又回到原点,形成一大一小相互套连的两个环,大环 周长是原莫比乌斯环的两倍,小环周长与原莫比乌斯环相同。
如果我们进一步实验,将莫比乌斯环沿4等分线剪开,我们会发现下面的现象:居然剪出了两个互相链接的纸环,展开2个纸环并拉直,可以看出2个纸环是一样长的。
将莫比乌斯环沿5等分线剪开,则可以剪出3个互相链接的纸环,展开3个纸环并拉直,可以看出其中2个环一样长,另一个环长度是其他两环的一半。将莫比乌斯环沿6等分线剪开,可以剪出3个互相链接的纸环,展开3个环可以看到,3个环一样长。
新得到的这个较长的纸圈,本身却是一个 双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。把上述纸圈,再一次沿中线剪开,这回可真的一分为二了,得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
相反,拿一张白的长纸条,把一面涂成黑色,把其中一端360度翻一个身,粘成一个双侧曲面。用剪刀沿纸带的中央把它剪开。纸带不仅没有一分为二,反而剪出两个环套环的双侧曲面。
莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决。
比如在普通空间无法实现的"手套易位"问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套完全贴合于右手;也不能把右手的手套完全贴合于左手。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。
在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是 右手系的,它们之间有着极大的不同。

拓展

制作过程中把纸带一端旋转180度可以,旋转540度、900度……都符合莫比乌斯带的定义。(在省略号中的数为180的奇数倍均可以)

和几何学关系

可以用参数 方程式创造出立体莫比乌斯带
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为 x-y面,中心为(0,0,0)。参数
uv从一个边移动到另一边的时候环绕整个带子。
拓扑学上来讲,莫比乌斯带可以定义为 矩阵[0,1]×[0,1],边由在0≤ x≤1的时候( x,0)~( 1-x,1)决定。
莫比乌斯带是一个 二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作 RP# RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间, I= [0,1]的圆 S上的非平凡丛。仅从莫比乌斯带的边缘看去给出 S上一个非平凡的两个点(或 Z 2)的从。

拓扑变换

莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由 拓扑变换成为一个 阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。

旋转纬度的分析

传统的 三维世界里,所有的 维度都是直线式的,但如果将旋转视为一种纬度,则相对容易对莫比乌斯带进行解释。
从莫比乌斯带的结构来看,它包含了一个水平360度旋转的维度,同时包含了一个垂直方向上360度旋转的维度,加上带子本身的平面(x,y)维度,莫比乌斯带总共是四个维度。
如果垂直方向上旋转的度数继续增加,只会增加莫比乌斯带缠绕的圈数,并不会额外增加空间的维度。
中文名
莫比乌斯指环
外文名
Möbius strip或者Möbius band
别名
梅比斯环或麦比乌斯带
结构
拓扑学结构
zhua曲子白渡白颗
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定