中英
stats
/ stæts /
/ stæts /
  • 简明
  • 柯林斯
  • abbr.统计(statistics);静止坦克自动目标系统(Stationary Tank Automatic Target System)
  • 网络释义
  • 专业释义
  • 英英释义
  • 1

     统计

    ...将比其他的参数更具说服力。至于其他的,涉及到公司商业秘密,恕我无可奉告。 Q:现在所有人都在关注足球场上的数据分析,行业内的先行者们早已表明统计(stats)和度量(metrics)指标是完全不同的。你能给我们更深层次的探讨一下这个命题么?

  • 2

     游戏统计

    ... Objectives,成就系统: Stats,游戏统计: Store,商店: ...

  • 3

     统计值

    ... statistics 统计信息;统计值 stats 统计;统计值 stlout stl 输出;汇出 ...

  • 4

     数据统计

    ... expert 没有任何辅助,完全由玩家手动瞄准 STATS 数据统计 MULTIPLAYER 多人连线模式(联网才可用) ...

  • 5

     状态

    ...查看Memcache 运行状态stats(Status) —— Memcache Telnet 接口...

短语
查看更多
  • 双语例句
  • 权威例句
  • 1
    Listing 15 displays the stats.
    清单15显示了相关的状态信息。
  • 2
    No new stats here, why not?
    这里没有新的统计数据,为什么没有呢?
  • 3
    Stats are just way more important.
    属性是更加重要的。
查看更多
  • 百科
  • Stats

    Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is necessary to begin with a population or process to be studied. Populations can be diverse topics such as "all persons living in a country" or "every atom composing a crystal". It deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.In case census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena. To make an inference upon unknown quantities, one or more estimators are evaluated using the sample.Standard statistical procedure involve the development of a null hypothesis, a general statement or default position that there is no relationship between two quantities. Rejecting or disproving the null hypothesis is a central task in the modern practice of science, and gives a precise sense in which a claim is capable of being proven false. What statisticians call an alternative hypothesis is simply an hypothesis that contradicts the null hypothesis. Working from a null hypothesis two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a "false positive") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a "false negative"). A critical region is the set of values of the estimator that leads to refuting the null hypothesis. The probability of type I error is therefore the probability that the estimator belongs to the critical region given that null hypothesis is true (statistical significance) and the probability of type II error is the probability that the estimator doesn't belong to the critical region given that the alternative hypothesis is true. The statistical power of a test is the probability that it correctly rejects the null hypothesis when the null hypothesis is false. Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems. Confidence intervals allow statisticians to express how closely the sample estimate matches the true value in the whole population. Formally, a 95% confidence interval for a value is a range where, if the sampling and analysis were repeated under the same conditions (yielding a different dataset), the interval would include the true (population) value in 95% of all possible cases. In statistics, dependence is any statistical relationship between two random variables or two sets of data. Correlation refers to any of a broad class of statistical relationships involving dependence. If two variables are correlated, they may or may not be the cause of one another. The correlation phenomena could be caused by a third, previously unconsidered phenomenon, called a lurking variable or confounding variable.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.

查看更多