第五章
... 第四章 The Properties of Gases 第五章 Integrals 第六章 Applications of Integration ...
第四章
... 第三章 Elementary functions 第四章 Integrals 第五章 Series ...
第八周
... 第七周 Integrals 第八周 Integrals 第十周 Series ...
第七周
... 第六周 Elementary functions 第七周 Integrals 第八周 Integrals ...
The integral is an important concept in mathematics. Integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integralis defined informally as the signed area of the region in the xy-plane that is bounded by the graph of f, the x-axis and the vertical lines x = a and x = b. The area above the x-axis adds to the total and that below the x-axis subtracts from the total.The term integral may also refer to the related notion of the antiderivative, a function F whose derivative is the given function f. In this case, it is called an indefinite integral and is written:However, the integrals discussed in this article are those termed definite integrals.The principles of integration were formulated independently by Isaac Newton and Gottfried Leibniz in the late 17th century. Through the fundamental theorem of calculus, which they independently developed, integration is connected with differentiation: if f is a continuous real-valued function defined on a closed interval [a, b], then, once an antiderivative F of f is known, the definite integral of over that interval is given byIntegrals and derivatives became the basic tools of calculus, with numerous applications in science and engineering. The founders of calculus thought of the integral as an infinite sum of rectangles of infinitesimal width. A rigorous mathematical definition of the integral was given by Bernhard Riemann. It is based on a limiting procedure which approximates the area of a curvilinear region by breaking the region into thin vertical slabs. Beginning in the nineteenth century, more sophisticated notions of integrals began to appear, where the type of the function as well as the domain over which the integration is performed has been generalised. A line integral is defined for functions of two or three variables, and the interval of integration [a, b] is replaced by a certain curve connecting two points on the plane or in the space. In a surface integral, the curve is replaced by a piece of a surface in the three-dimensional space.Integrals of differential forms play a fundamental role in modern differential geometry. These generalizations of integrals first arose from the needs of physics, and they play an important role in the formulation of many physical laws, notably those of electrodynamics. There are many modern concepts of integration, among these, the most common is based on the abstract mathematical theory known as Lebesgue integration, developed by Henri Lebesgue.