约束最小生成树问题研究。
提出了求解度约束最小生成树问题的单亲遗传算法。
In this paper, a parthenogenetic algorithm for solving the degree-constrained minimum spanning tree problem is proposed.
根据问题的特征,提出了一个求解最小支撑树问题的DNA算法。
According to the character of the problem, a DNA algorithm solving the Minimum Spanning Tree problem is given.
文中将机制设计的标准工具VGC机制应用到解决最小支撑树问题。
Apply the standard tools of VGC mechanism design to solve the minimum spanning tree problem.
本文利用统计分析法,提出求解矩形斯坦纳树问题的多项式时间算法。
This paper presents a polynomial time algorithm for finding Rectilinear-Steiner-Trees by statistical analysis.
还在求解度限制树问题的基础上,提出了基于蚂蚁算法的聚类分析方法。
Base on solving the problem of degree-constrained minimum spanning tree, we put forward a new method to solving clustering problem.
主要研究两类约束最小支撑树问题,即点约束和边约束最小支撑树问题。
In this paper, two types of the minimum weight spanning tree with constraints are investigated.
本文首先介绍了超大规模集成电路的物理设计流程,在此基础上引出直角斯坦纳树问题。
At first, this thesis introduces the VLSI physical design process, based on this leads to the rectilinear Steiner tree problem.
最后本文给出了在更高维空间的直角斯坦纳树问题的定义,和相应的最小凸多面体的构造。
Finally, this thesis gives the definition of the rectilinear Steiner tree problem in more higher-dimensional space, and the corresponding structure of the minimum convex polyhedron.
考虑了在带区间数据的不确定网络中,最小风险和模型以及最小最大风险模型下的斯坦纳树问题。
Based on the models of minimum risk sum and minimum maximum risk, this paper is concerned with the minimum Steiner tree problems in uncertain networks with interval data.
针对虚拟设计中的方案树搜索树问题提出一种新的优化模型,并结合人工神经网络技术加以解决。
This paper presents an optimization model of virtual design for project search tree problem, which can be solved by using the characteristic artificial neural net.
研究流量约束最小生成树问题(CMST),它是通讯和网络优化设计中最为基础和重要的问题之一。
The capacitated minimum spanning tree problem (CMST), one of the most fundamental problems in telecommunications and in the optimal design of networks, is studied.
本文研究了由MSN节点组成的应用层组播网络,提出了度约束最小直径生成树问题,并给出了求解该问题的BCT算法。
The paper studies the application layer multicast networks of MSNs, and presents a heuristic BCT algorithm for degree-constrained minimum diameter spanning tree problem.
现在的问题是怎样把树弄倒,或者怎样把他的狗弄到?
The question now was how to get down the trees, or how to get his dogs down?
这些颜色很瑰丽,但究竟为什么有些树会变成黄色或橙色,而有些树会变成红色或紫色,这个问题一直困扰着科学家。
The colours are magnificent, but the question of exactly why some trees turn yellow or orange, and others red or purple, is something which has long puzzled scientists.
然而,育亨宾树引发的问题似乎比它的效用更多。
However, yohimbe seems to cause more problems than it is probably worth.
在许多情况下,您可能需要浏览JNDI名称树,以了解应用程序或调试应用程序的问题。
In a lot of situations, you might need to browse the JNDI name tree, either to understand applications or debug application problems.
根据使用用户专用文件系统树的实际意图的不同,这可能会成为一个问题。
Depending on the actual motivation for and use of the per-user filesystem trees, this may be a problem.
这个模型可用于任何未知的数据实例,来预测这个未知数据实例是否通过只询问两个简单问题就能理解分类树。
This model can be used for any unknown data instance, and you are able to predict whether this unknown data instance will learn classification trees by asking them only two simple questions.
开发人员必须按照树操作表达自己的问题。
You, the developer, have to express your problem in terms of tree manipulation.
虽然可以签出源代码树,但是源代码的组织主要是个人偏好的问题。
While you could check out the source tree, source code organization is largely a matter of personal preference.
如果尝试刚提到的练习i,您可能会发现标记的树视图中存在一些潜在问题(如果不练习的话,那就听我说吧!)
If you tried the exercise I just mentioned, you probably found some of the potential troubles for a tree-view of your markup (if you didn't exercise, just take my word for it!)
创建流程在创建单一树的代码时不存在依赖问题,且也不会影响其结构。
Build processes that work with code from a single tree have no problem with the dependencies and do nothing to discourage their construction.
一旦理解了有问题的代码想做什么,就可以把错误与代码生成树联系起来,并分离出生成出错的模型组件。
Once I understood what the code in question was attempting to do, I could then relate the error to the code generation model tree and isolate the model component where the generation was going awry.
但是,如果用户希望再回来访问树的同一部分就可能出现问题。
However, this can cause problems if the user wants to cycle back and access the same parts of the tree again.
使用LinQ解决此问题的解决方法是使用表达树,这是一种类似反射的机制,您不仅可以用它反射类的成员,还可以用它反射某个方法的代码。
The LinQ solution for this problem is expression trees, a reflection-like mechanism whereby you can reflect over not only a class's members, but also a method's code.
在函数式编程中,解决遍历和修改树的问题的一种知名的解决方法就是zippers (zipper),因gerard Huet(参见参考资料)的描述而闻名于世。
A well-known solution to the problem of traversing and modifying a tree in functional programming is the zipper, most famously described by Gerard Huet (see Resources).
在函数式编程中,解决遍历和修改树的问题的一种知名的解决方法就是zippers (zipper),因gerard Huet(参见参考资料)的描述而闻名于世。
A well-known solution to the problem of traversing and modifying a tree in functional programming is the zipper, most famously described by Gerard Huet (see Resources).
应用推荐