分析、设计和实现了一个基于条件随机场模型的汉语分词和词性标注模块。
We analyzed, designed and achieved a module of Chinese word segmentation and Part-Of-Speech Tagging based on Condition Random Fields model.
根据条件随机场模型和马尔可夫随机场模型建立了一个最大后验概率框架。
Firstly, maximum a posteriori framework is created according to conditional random field model and Markov random field model.
针对旅游领域,提出了一种基于层叠条件随机场模型的旅游领域命名实体识别方法。
This paper presents a method for named entity recognition in the tourism domain based on the cascaded conditional random fields.
我们利用条件随机场模型抽取领域实体对象,并将其应用于比较句识别和比较关系抽取中,取得了良好的实验效果。
We use CRF model to extract domain entities which are applied to identify comparative sentences and mine comparative relation with good results.
其次,本文选用了一种将基于统计方法的条件随机场模型与基于规则方法的词性筛选模型相结合的方式对中文问句进行语义角色自动标注。
Secondly, this paper proposed a method combined rule-based pos selection model with Statistics-based Cascading Conditional random field to conduct semantic Role Labeling of Chinese Question.
条件随机场是一种无向图模型,它具有产生式模型和最大熵马尔可夫模型的优点。
Conditional Random Fields (CRF) is arbitrary undirected graphical model that bring together the best of generative models and Maximum Entropy Markov models (MEMM).
我们的方法是将简称生成问题转化为等价的序列标注问题,并利用一阶条件随机场建立自动生成模型。
In our method, we transformed the problem into an equivalent sequence tagging problem, and built up the automatic generation model through the first order conditional random field.
本文系统的介绍了条件随机场的定义、模型结构、特征函数、参数估计及其训练方法等。
This text systematically introduces the definition of CRFs, structure of the CRFs model, feature functions, parameter estimate and training methods.
提出了未来关于应用条件随机场构建汉语词法语块分析模型的初步构想。
This dissertation also discusses applying Conditional Random Fields to Chinese Chunk Parsing and our future works.
而后给出了条件随机场的定义、模型结构、势函数的定义、参数估计、训练方法和计算方法等。
Then give the definition of CRFs, model structure, the definition of potential function, parameter estimation, training methods and calculation methods.
而后给出了条件随机场的定义、模型结构、势函数的定义、参数估计、训练方法和计算方法等。
Then give the definition of CRFs, model structure, the definition of potential function, parameter estimation, training methods and calculation methods.
应用推荐