对一般布尔代数上的布尔置换进行了研究,即第二章第一节。
In the first section of the second chapter, the Boolean permutation on general Boolean algebra has been studied.
讨论了李超代数上的左超对称结构与其上的1维上同调群的关系。
It discusses the relationship between left-supersymmetric structures on Lie superalgebra and its 1 th cohomology group.
引进t _导子的概念,刻划了一般代数和算子代数上的T _导子的特征性质。
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
对于UHF代数上满等距的结构,还证明了UHF代数上的2局部(满线性)等距是线性的。
We also prove that every 2-local isomety of UHF algebra is linear by studying the structure of the surjective isometry on UHF algebra.
最后一部分中,我们讨论左对称代数和李代数上的左对称结构在着色李超代数中进一步的推广。
In the last part, we further generalize left symmetric algebra and left symmetric structure on Lie algebras into Lie color algebras.
借助近似代数上的原子及同余关系,证明了在适当选取余运算之后,粗集代数就构成伪补MS代数。
Based on the atoms and congruence relations of approximation algebra, it is proved that rough set algebra becomes pseudo-complemented ms algebra if proper complement operators are selected.
接着对矩阵代数m_3 (C)的子代数上的2 -上循环进行了等价刻画,得到了其上的双线性映射是2 -上循环的充要条件。
Subsequently, we character and study the 2-cocycles on a subalgebra of the algebra M3 (c) and obtain the necessary and sufficient conditions that a bilinear mapping is a 2-cocycle on this algebra.
他们完成了长期以来努力对霍普夫代数上根进行的分类。
They finished their long-term classification effort of Hopf algebras with coradical.
把UML状态机中的状态映射到一种项代数上,用归纳的状态项表示状态机的状态。
The UML state is firstly represented by inductive state term from some kind of term algebra.
我们班在代数上有大量的练习。
进一步证明了TUHF代数上满的2 -局部等距为线性。
Furthmore and it is proved that every 2-local isometry of TUHF algebra is linear.
首先在NML代数上引入MP -滤子与素滤子的概念,进而讨论了滤子和素滤子的基本性质,最后在全体素滤子之集上建立了拓扑结构。
Firstly the concepts of MP-filters and prime filter in NML algebras are introduced, and then topological structure of the set of all prime filters of NML algebras are discussed.
布尔代数上何时存在正测度的问题,虽已有相对完整的结果,但多附有一些集论的假设条件。
When there is a positive measure on Boole algebra? This problem had more complete results, but they require some set-theoretic hypothesis usually.
同时也刻画了布尔代数上强保持交换矩阵对的线性算子。
And also we characterize the linear operators that strongly preserve commuting pairs of matrices over Boolean algebras.
本文讨论了三角函数在有理度数上的取值的代数性质,得出其取值均为代数数。
This paper discusses an algebraic property of values of rational degrees of triangle functions. We obtain that they are all algebraic Numbers.
研究了极大代数上线性系统的单输入单输出的最小实现问题。
We study the minimal realization of a low dimension SISO linear system in the Max - algebra.
本文研究了三角矩阵代数上保持交换性的可加映射的结构。
We study in this paper the structure of additive mappings on triangular matrix algebras which preserve commutativity.
本文刻画了布尔代数上强保持交换矩阵对的线性算子。
In this paper, the linear operators that strongly preserve commuting pairs of matrices over are characterized.
本文给出了一般串并行生产线,反馈生产线的极大代数上线性状态方程所描述的数学模型。
This paper give the mathematical models of general serial-parallel production lines and feedback production lines. The mathematical models are described by linear state equations over max-algebra.
第二章借助垂直范畴得到了关于有限表示型遗传代数,任意有限维遗传代数上几乎完备例外序列补的一些结论。
In chapter 2, we get some conclusions for the completion of the almost complete exceptional sequence of representation-finite type algebra and finite dimensional algebra using perpendicular category.
进而,从对称的观点说明婚姻形式从简单到复杂的演化过程,代数上对应于对称群阶数的增加,几何上则对应于对称性的加强。
Furthermore, it illustrates when the form of marriage changes from simplicity to complexity, the group has better symmetry on geometry, the order of the group is h...
进而,从对称的观点说明婚姻形式从简单到复杂的演化过程,代数上对应于对称群阶数的增加,几何上则对应于对称性的加强。
Furthermore, it illustrates when the form of marriage changes from simplicity to complexity, the group has better symmetry on geometry, the order of the group is h...
应用推荐