This paper focuses on the prosodic structure prediction model.
本文重点研究了韵律结构预测模型。
They will then be doing cutting-edge research in protein-structure prediction.
随后玩家们将参与到蛋白结构预测这一尖端课题的研究中。
Designing a scoring function plays a key role in protein structure prediction.
评分函数设计是预测蛋白质结构的关键之一。
This is a web page of Classification and Secondary Structure Prediction of Membrane Proteins.
这是膜蛋白分类和二级结构预测在线工具的网页。
One of the most important research areas in bioinformatics is RNA secondary structure prediction.
RNA二级结构预测问题是生物信息学的一个研究重点。
After that there will be a down time while we implement new methods of protein structure prediction.
之后将有一段停机时期,我们将实现新的蛋白质预测方法。
RNA secondary structure prediction is one of the most important fields in computational molecular biology.
RNA二级结构预测是计算分子生物学中的一个重要领域。
Proteomics strategy tools usually focus on similarity searches, structure prediction, and protein modeling.
蛋白质组学战略工具通常集中于相似性搜索,结构预测,蛋白质模型建立。
Computational methods for structure prediction still have a way to go before they could replace experimental methods.
在他们找到其他试验方法之前,这种结构预测的计算方法还有很长的一段路要走。
Protein structure prediction has proven to be one of the central problems in the field of computational biology.
蛋白质结构预测问题是计算生物学领域的核心问题之一。
The experimental results from the protein structure prediction demonstrate that the model is effective and promising.
实验研究结果表明本文所提出的模型是有效的并具有良好的发展前景。
Protein structure prediction problem is to predict the dimensional folding configurations from its amino acid sequence.
蛋白质构形预测问题就是根据组成蛋白质的氨基酸序列来预测其空间折叠结构。
We discuss some developments in this area, including off-lattice structure prediction using the great deluge algorithm.
我们讨论了这个领域的一些进展,包括使用大洪水算法进行的非晶格结构预测。
Absrtact: Mainly introduces protein secondary structure prediction based on structural machine learning-covering algorithm.
摘要:介绍了构造性机器学习方法——覆盖算法在蛋白质二级结构预测中的应用。
Protein secondary structure prediction is a fundamental and important component in the study of protein structure and functions.
蛋白质二级结构是研究蛋白质结构和功能的基础和重要组成部分。
Protein secondary structure prediction becomes the most important step of predicting the space conformation from protein molecule.
蛋白质二级结构预测是蛋白质结构预测的重要组成部分,是蛋白质结构预测最关键的步骤。
Create flowcharts, top-down diagrams, information tracking diagrams, process planning diagrams, and structure prediction diagrams.
用于创建流程图、顺序图、信息跟踪图、流程规划图和结构预测图。
Numerical tests illustrate that the memory Tabu search algorithm is feasible and effective to protein structure prediction problems.
数值实验表明该算法对于蛋白质结构预测是可行有效的。
In the paper, an improved TS algorithm is proposed for protein Three-Dimensional (3d) folding structure prediction in AB off-lattice model.
基于AB非格模型,该文将一种改进的禁忌搜索算法应用于蛋白质三维折叠结构预测。
The methods for RNA secondary structure prediction can be divided into two categories which are the methods based on thermodynamics and phylogenetics.
RNA二级结构预测方法可以分为基于热力学的预测方法和基于系统发生学的预测方法两大类。
Using a new neighborhood structure and partly randomized off-trap strategy, a novel local search algorithm for protein structure prediction is proposed.
构造了新的邻域结构,采用了部分随机跳坑策略,对此问题提出了新的局部搜索算法。
Research on conformational space of protein structure in which proteins take clear regulation plays a key role in protein structure prediction and simulation.
蛋白质结构构象呈现明显的规律,研究其在特定构象空间的分布对蛋白质结构预测和模拟具有重要意义。
Create flowcharts, top-down diagrams, information tracking diagrams, process planning diagrams, and structure prediction diagrams. Contains connectors and links.
创建流程图、顺序图、信息跟踪图、流程规划图和结构预测图。包含连接线和链接。
The biological sequence analysis research content mainly includes the sequence alignment, the protein structure prediction, and the genome sequence analysis etc.
生物序列分析的主要研究内容包括序列比对、蛋白质结构预测、基因组序列分析等。
Use for flowcharts, top-down diagrams, information tracking diagrams, process planning diagrams, and structure prediction diagrams. Contains connectors and links.
用于创建流程图、顺序图、信息跟踪图、流程规划图和结构预测图。包含连接线和链接。
We are also currently competing with a Foldit team in CASP9, the main competition for evaluating protein structure prediction methods on unreleased protein structures.
我们现在也在和一个代号为CASP9的游戏小组进行比赛,主要比赛项目是评估蛋白质预测方法在未公布的蛋白质结构上实施的可行性。
The structure prediction of proteins is the important problem of biology informatics. And the protein sequence is the base of the structure prediction of proteins.
蛋白质结构预测是生物信息学中的重要课题,而蛋白质序列是蛋白质结构预测的基础。
Some methods are reviewed and different states of protein structure prediction are introduced, and some difficulties in protein structure prediction are put forward.
详细地综述了几种方法,并简单地介绍了蛋白质结构预测的几个不同阶段,并提出了在蛋白质结构预测方面存在的一些困难。
The protein structure prediction is a main direction in bioinformatics, and the prediction of protein contact maps is an important content in protein structure prediction.
蛋白质结构预测是生物信息学的一个主要研究方向,而蛋白质关联图预测是其中的一个重要内容。
Aiming at solving the complicated non-linear pattern classification problem of protein secondary structure prediction, a new method based on radial basis function is proposed.
文章针对蛋白质二级结构预测这一复杂非线性模式分类问题,提出了基于径向基函数的预测方法。
应用推荐