Spacecraft reentry trajectory optimization is a kind of optimal control problem.
飞行器再入轨迹优化是一类最优控制问题。
This astronaut photograph highlights the reentry plasma trail of one such spacecraft, the ISS Progress 42p supply vehicle (Russian designation M-10M).
这张太空影像就是显示了进步42p飞船(俄称M - 20 M飞船),在“回归”大气层时等离子化的轨迹。
Firstly, this article is reviewed the serious problems caused by real gas effects and spacecraft aerodynamics during the reentry of a spacecraft.
首先介绍了航天器再入飞行中遇到的真实气体效应问题及其对航天器气动特性所产生的影响。
Using numerical calculation, optimal roll program, the ratio of lift and drag, reentry Angle and reentry time of spacecraft are gotten.
通过数字计算,得到飞船的最优滚转程序、升阻比、再入角和再入终端时间。
Spacevehicles such as spacecraft and space shuttle are subjected to severe aerothermal environment with the peak heating at height of 60~90km while they maneuver to reentry the earth's atmosphere.
航天飞行器在再入大气过程中会受到严重的气动加热。返回式卫星、飞船返回舱及航天飞机等采取高空机动再入,再入时间长,其峰值加热过程一般在60-90千米高空。
Landing is the last stage of reentry of manned spacecraft after the flight mission has been completed.
载入飞船完成飞行任务后,返回着陆是飞行的最后一环,据统计也是事故多发阶段。
For reentry capsules of spacecraft, making up the trajectory in black-out area is a key link of aerodynamic analysis from flight test data.
对于飞船返回舱,黑障区弹道再现是再人飞行试验气动分析工作的重要环节。
For reentry capsules of spacecraft, making up the trajectory in black-out area is a key link of aerodynamic analysis from flight test data.
对于飞船返回舱,黑障区弹道再现是再人飞行试验气动分析工作的重要环节。
应用推荐