This paper presents a new quadrature method for singular integrals.
本文给出一种新的奇异积分求积方法。
The calculation of singular integrals are treated by special process.
并对奇异积分(柯西主值积分)的计算进行了特殊处理。
The singular integrals are low in precision when the source points approach the element.
当配置点接近积分单元时,非奇异积分计算精度将降低。
When applying BEM to elastoplastic problems, the strongly singular integrals over volume cells have to be estimated.
采用边界元法分析弹塑性问题时,需要解决塑性域剖分单元上的强奇异积分汁算问题。
This paper discusses the estimation of approximation orders of singular integrals over a general curve by means of cubic complex spline.
讨论曲线上柯西型奇异积分利用三次复样条进行近似计算的误差估计,对于相关函数类给出了这类逼近的误差阶。
The calculation of the initial stress (or initial strain) singular integrals in elastoplastic boundary element method is a difficult, but an important problem.
弹塑性边界元法中初应力(或初应变)奇异体积分的计算一直是一个较为困难、但又是非常重要的问题。
The application range of boundary element method (BEM) is reduced in engineering for a long time due to the difficulty of evaluation of the nearly singular integrals.
边界元法中存在的几乎奇异积分的难题,一直限制着其在工程中的应用范围。
This paper presents an optimum numerical algorithm of center rule for the approximate evaluation of singular integrals over rectangular domains with a inner singularity.
本文对于矩形区域上某一内点为奇点的奇异积分的近似计算给出了优化中心数值算法,它在迭代计算过程中避免了函数值的重复计算。
Hence, a new stress natural BIE is developed, in which there only exist the strongly singular integrals instead of the hypersingular integrals in the conventional stress BIE.
研究二维弹性力学问题边界积分方程,通过分部积分变换消除了常规导数边界积分方程中的超奇异积分,获得仅含强奇异积分的应力自然边界积分方程。
On account of the difficulty of evaluating the nearly singular integrals in boundary element method (BEM), the application range of BEM is reduced in engineering for a long time.
边界元法中存在拟奇异积分计算难题,它一直限制着边界元法在工程中的应用范围。
A new analytical integral algorithm is proposed and applied to the evaluation of the nearly singular integrals in the Boundary Element Method for 2d anisotropic potential problems.
导出了一种解析积分算法,精确计算了二维各向异性位势问题边界元法中近边界点的几乎奇异积分。
Boundary element method (BEM) is a simple and effective numerical method to solve potential problems, but usually requires calculation of singular integral, even hyper-singular integrals.
边界元方法求解位势问题有效而简单,但通常需要数值计算奇异积分甚至超强奇异积分。
To begin with, a regularized boundary integral equation with indirect formulation is adopted to deal with the singular integrals and the boundary unknown quantities can be calculated accurately.
首先,采用间接制定正规化边界积分方程的奇异积分处理,可以计算出准确的边界未知量。
The nonsingular integrals are popularly calculated by the Gauss numerical integral, and they are low in precision when the source points approach the element, and the singular integrals are complex.
非奇异积分一般采用数值积分,当配置点接近积分单元时,计算精度较低,奇异积分的计算也很复杂。
The nonsingular integrals are popularly calculated by the Gauss numerical integral, and they are low in precision when the source points approach the element, and the singular integrals are complex.
非奇异积分一般采用数值积分,当配置点接近积分单元时,计算精度较低,奇异积分的计算也很复杂。
应用推荐