Two properties of infinite cyclic sub-semigroups are given.
给出了无限循环子半群的两个性质。
In this paper, we study the zero-divisor semigroups of tournaments.
讨论了竞赛图的零因子半群。
As an application, we obtained the characterizations of F-abundant semigroups.
作为这一方法的应用,我们还给出了F -富足半群的一种结构。
Structures and properties of quasi-commutative chained semigroups are studied.
研究了拟交换链半群的结构和性质。
Basic properties of the dense sub-semigroups in commutative groups are studied.
引入了可换群的稠密子群,并研究了它的基本性质。
There exists an irregular semigroups in which joins of good congruences are good.
存在所有好余的并都是好余的非正则半群。
A new construction theorem for orthodox semigroups with inverse transversals was given.
本文给出了具有逆断面的纯正半群的一个新的构造定理。
The structure theorem of weakly left C-semigroups is also included as its special case.
弱左c半群的结构定理是此定理的特例。
On this base, some properties of fuzzy good congruences on adequate semigroups are given.
在此基础上,给出了适当半群上模糊好同余的性质。
The minimal presentations of this kind of numerical semigroups are completely determined.
本文完全确定了该类数字半群的极小表示。
As a generalization of quasi C semigroups, left semiregular orthogroups are defined in this paper.
作为拟C-半群的推广,本文定义了左半正则纯整群并半群,给出了它的左半织积结构。
In this paper, we characterize the semigroups whose finite non empty subsets are weakly admitable.
本文对有限非空子集是弱容许集的半群进行分类。
The authors also proved the uniqueness theorem on structure decomposition of right complete semigroups.
作者证明了右完全半群的结构分解唯一性定理。
These subsemigroups play a decisive role in constructing regular semigroups with an inverse transversal.
这些子半群在构造具有逆断面的正则半群中起决定性作用。
Ideal and Greens relation theoretical characterizations of quasi intra regular ordered semigroups are given.
对拟内正则序半群给出了在理想和格林关系理论方面的若干刻划。
Thus the corresponding results related to topological semigroups or topological groups have been generalized.
推广了已有拓扑半群或者拓扑群的一些结果。
The translational hull of a semigroup plays an important role in the theory of ideal extensions of semigroups.
半群平移壳在半群的理想扩张理论中占据重要地位。
The constructions of inverse semigroups and fundamental orthodox semigroups with inverse transversals are simple.
逆半群和具有逆断面的基础纯正半群的结构是比较简单的。
In this paper we discuss some properties of completely simple semigroups, and some examples of application are Gwen.
本文讨论了完全简单半群的某些性质并给出了若干应用的例子。
The author discusses the problem of the semidirect products of completely simple semigroups without identity element.
在去掉幺元的情况下,讨论了完全单半群的半直积问题。
Then we give a structure theorem of weak LR-good quasi-adequate semigroups by using the tool of dual semidirect product.
并运用双重半直积给出弱LR 好拟适当半群的结构定理。
In this paper, the structure of G inverse semigroups is discussed and some important classes of G inverse semigroups are given.
本文讨论一类重要的半群即G逆半群,文中给出G逆半群的主要的几例子,并详尽地讨论了G逆半群的构造.。
In this dissertation, we mainly consider transitive linear semigroups and topologically transitive linear semigroups of M_n (c).
本文主要研究右迁移单迁移线性半群、迁移单迁移线性半群和拓扑迁移半群。
The main topic is some applications of refined semilattices of semigroups in the study of properties and structures of semigroups.
本文主要讨论了半群的加细半格在研究半群的性质和结构中的若干应用。
Furthermore, the notion of completely fuzzy left ideal is presented and its particular properties in regular semigroups are obtained.
进一步给出完全模糊左理想的概念,讨论了它在正则半群中的一些特殊性质。
I-regular and I-inverse semigroups are two important classes ordered semigroups as a generalization of regular and inverse semigroups.
正则半群和I -逆正则半群是正则半群和逆正则半群在序半群中的推广,它们是两类重要的序半群。
The stable type space is defined and a characteristic property on exponential stability of C_0 semigroups is given in this kind of spaces.
本文给出稳定型空间的定义,给出C_0半群在这类空间上指数稳定的充要条件。
Then group congruences, the least group congruence, regular congruence, and idempotent-seperating congruence on such semigroups are obtained.
其次,对这类半群上的群同余、最小群同余、正则同余、幂等分离同余做了进一步研究。
Then group congruences, the least group congruence, regular congruence, and idempotent-seperating congruence on such semigroups are obtained.
其次,对这类半群上的群同余、最小群同余、正则同余、幂等分离同余做了进一步研究。
应用推荐