The generalized Riemann problem for a class of decoupled nonlinear hyperbolic system of conservation laws is studied.
研究一类解耦非线性双曲守恒律系统的广义黎曼问题。
In hydrodynamics, however, the scheme for numerical flux is constructed from the solution of the generalized Riemann problem in the present research.
本文采用求解非齐次方程组的广义黎曼问题解,对模型数值通量计算格式进行了修改。
In this paper, we get a method to solve a non-linear RH problem by the Cauchy-Riemann conditions and the theories of partial differential equation.
利用柯西黎曼条件和偏微分方程理论,得到了一类非线性RH问题的求解方法,并通过实例表明该方法是可行的。
Under the Euclidean measure, the analytical solutions to the above problem are obtained by employing the Riemann Liouville fractional calculus theory.
在欧氏测度下 ,应用R L分数阶微积分算子理论给出了上述问题的精确解 。
The double-valued problem can be simplified by introducing an appropriate affine parameter, namely, mapping the two Riemann sheets on the plane of the spectral parameter to the affine parameter space.
后来发现可以通过引入仿射参数而避开双值性,实质上是将两叶黎曼面分别映射到 仿射参数空间。
The double-valued problem can be simplified by introducing an appropriate affine parameter, namely, mapping the two Riemann sheets on the plane of the spectral parameter to the affine parameter space.
后来发现可以通过引入仿射参数而避开双值性,实质上是将两叶黎曼面分别映射到 仿射参数空间。
应用推荐