Weighted acceleration, Raya Punuo Fu index using the formula, it draws on principal component analysis algorithm (PCA).
计算加权加速度,使用拉亚·普诺夫指数的公式,借鉴了主成分分析算法(PCA)。
Then analysis several main factors use of principal component analysis algorithm, rejecting the factor with minimum weight.
对其中的几个主要因素进行主成分分析,剔除权重最小的因素;
The received signal is given eye and BER simulation systems, Modeling and simulation PWM rectifier it draws on principal component analysis algorithm (PCA).
给出接收信号眼图及系统仿真误码率,pwm整流器的建模仿真,借鉴了主成分分析算法(PCA)。
MinkowskiMethod algorithm, Prediction Error Method for Parameter Identification - the idea of relaxation, it draws on principal component analysis algorithm (PCA).
MinkowskiMethod算法,预报误差法参数辨识-松弛的思想,借鉴了主成分分析算法(PCA)。
Numerical solution of differential equations method, Includes the modulation, demodulation, signal to noise ratio calculation, it draws on principal component analysis algorithm (PCA).
微分方程组数值解方法,包括调制,解调,信噪比计算,借鉴了主成分分析算法(PCA)。
An outlier detection algorithm based on principal component analysis and the sum of attributes distance is proposed.
提出了一种基于主分量分析和属性距离和的孤立点检测算法。
This paper presents an algorithm about SAR image change detection based on Principal Component Analysis (PCA).
该文提出一种基于主分量分析(pca)的SAR图像变化检测算法。
To improve the running efficiency of the algorithm, the stochastic mapping of the patterns was modified based on principal component analysis.
为了提高群体智能聚类算法的运行效率,提出了利用主成分分析改善模式投影时的随机性。
The algorithm of face recognition based on kernel principal component analysis(KPCA)can abstract nonlinear features of image and can get better performance under less sample training conditions.
基于核主成分分析(KPCA)的人脸识别算法能够提取非线性图像特征,在小样本训练条件下有较好性能。
Obtained: Partial Least Squares iterative algorithm to handle data sheet leaflet extraction equivalence with Principal Component Analysis.
证明出,偏最小二乘迭代算法在处理单张数据表成分提取时与主成分分析相同。
In this paper, kernel independent component analysis (KICA) 's principle and algorithm are introduced, and then the KICA comparison with some other ICA and principal component analysis (PCA) is given.
论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。
A new road recognition algorithm based on local statistical features and principal component analysis is introduced to improve its robustness and adaptiveness.
为了提高道路识别算法的鲁棒性和自适应性,提出了基于局部统计特征和主元分析的道路识别算法。
An efficient algorithm using divergence based class-within principal component analysis (PCA) and analysis of corresponding coefficients is proposed.
该文提出了一种新的基于分类别主成分分析(PCA)散度的波段选择方法。
An efficient algorithm using divergence based class-within principal component analysis (PCA) and analysis of corresponding coefficients is proposed.
该文提出了一种新的基于分类别主成分分析(PCA)散度的波段选择方法。
应用推荐