This paper presents a rational function interpolation scheme of polygonal elements based on highly irregular grids. It is named as polygonal rational function interpolation (RFI).
借鉴自然邻点插值法,提出了基于高度不规则网格多边形单元的有理函数插值格式—多边形有理函数插值。
As a result, the limit surface of the polygonal mesh containing the symmetric zonal meshes is the subdivision surface satisfying the curve interpolation constrains.
因此,含有这种对称网格带的多面体网格的细分极限曲面即为满足曲线插值约束的细分曲面。
Adopting geometric method, the rational function interpolation is constructed on polygonal element.
采用几何的方法构造出多边形单元上的有理函数插值。
With shape functions of mean value interpolation and a bivariate Taylor expression, error estimation of mean value interpolation within polygonal elements is analyzed.
采用计算机图形学中的多边形平均值坐标,构造出以多边形顶点为插值节点的无理函数插值方法。
With shape functions of mean value interpolation and a bivariate Taylor expression, error estimation of mean value interpolation within polygonal elements is analyzed.
采用计算机图形学中的多边形平均值坐标,构造出以多边形顶点为插值节点的无理函数插值方法。
应用推荐