For the importance of the relationship between information and parity, the generator matrix and the parity-check matrix of every code have been discussed.
由于信息码元与校验码元之间关系的重要性,对每一种码的生成矩阵和校验矩阵均进行了讨论。
The method used a parity-check matrix of a short LDPC code as its mother matrix upon which a long code was constructed with circulant permutation matrices.
该方法利用一个短的LDPC码的校验矩阵作为其母矩阵,在此基础上采用循环置换矩阵构造一个长的LDPC码。
This article USES the parity check matrix to produce a simplified decoding table under the premise of not using the structure standard array.
在不用构造标准阵列的前提下,利用一致校验矩阵直接生成简化的译码表。
Low density parity check (LDPC) code, which is a special case of error correction code with sparse parity-check matrix, has the performance very close to the Shannon Limit.
LDPC码是一种特殊的具有稀疏校验矩阵的纠错编码,其性能逼近香农限。
This paper constructs irregular LDPC codes of unequal error protection with a parity check matrix in a lower triangular.
采用了近似下三角校验阵的形式,构造了一类具有不等错误保护的非规则ldpc码。
Due to the particular relation of generator matrix and parity check matrix, it can achieve unequal error protection performance with the modified decoding algorithm.
由于校验阵和生成阵满足一定的关系,因此可以采用修正的译码算法来实现对码字的不等错误保护。
A design of parity check matrix for Irregular LDPC codes based on per mutation matrix is proposed in this paper.
提出了一种基于置换矩阵的非规则低密度奇偶校验(LDPC)码的校验矩阵设计方法。
Low Density parity check (LDPC) codes are a kind of linear block codes approaching Shannon limit. They can be constructed either with spare parity-check matrix or with factor graphs.
LDPC码是一种可以接近香农限的线性分组码,可通过稀疏奇偶校验矩阵来构造,也可以用因子图来构成。
It is proved that the parity check matrix for BCH code is a representation form in the eigenvector basis. Thus the study on cyclic codes may be brought into the framework of linear system theory.
证明了BCH码的校验矩阵是用循环变换的特征向量作基底时的一种表示形式,从而把循环码的研究纳入到线性系统理论研究的框架之中。
The processor (50) then joins partial matrix H1 and partial matrix H2 to generate parity check matrix H.
然后,处理器(50)结合子阵H1和子阵H2来产生奇偶校验矩阵H。
When constructing a parity-check matrix, PEG can maximize the girth length, thus lowering error-floor, while quasi-cyclic structure bears other advantages.
在校验矩阵构造方面,PEG的构造方法在度约束条件下能最大化环长,从而降低误码平层。同时准循环码在结构化方面也有很多优点。
When constructing a parity-check matrix, PEG can maximize the girth length, thus lowering error-floor, while quasi-cyclic structure bears other advantages.
在校验矩阵构造方面,PEG的构造方法在度约束条件下能最大化环长,从而降低误码平层。同时准循环码在结构化方面也有很多优点。
应用推荐