The optimal error estimates are given.
同时给出了最优误差估计。
By use of novel approaches and techniques, the optimal error estimates are obtained.
通过引入新的证明方法和技巧,得到了最优误差估计,弥补了以往文献的不足。
Under this frame the optimal error estimates are obtained for semidisecrcte and fully discrete states.
在此框架下,我们得到了半离散与全离散情形的最佳逼近阶的估计。
Furthermore, the optimal error estimates in the norm L2 are derived. Finally, Numerical experiment verifies the theoretical results.
进一步,对相应有限元解进行误差分析,得到其最优l 2模估计,数值实验验证了理论结果的正确性。
The existence and uniqueness of the solution to these problems with the use of FEM are proved and optimal error estimates in weighted L2-norm are given.
本文讨论二维奇异非稳态问题的有限元方法,证明了弱解的存在唯一性,并给出有限元解的加权L2-模估计。
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived.
在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
Using the critical estimates of parabolic type partial differential equation. we obtain the error estimates of price and optimal exercise boundary of American option in a jump-diffusion model.
利用抛物型偏微分方程的极值原理,得到了带跳扩散模型下美式期权价格及最佳实施边界的误差估计。
According to the general theory of regularization, many error estimates are order optimal.
根据正则化理论,许多误差估计都是阶数最优的。
The optimal order error estimates in H1 is obtained.
结果且仍可得到H1模最优阶误差估计。
Generation into the optimal threshold AMSE (asymptotic mean squared error) provide options for moment estimates order of shape parameter.
代入最优阀值的渐近均方误差为我们提供了形状参数矩估计阶的选择依据。
In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
应用推荐