Finding an optimal scheduling for such an environment is a NP-hard problem, and so heuristic approaches must be used in general to get an optimal approximation solution.
由于在这样的环境中找到一个最优的调度是一个NP难问题,通常运用各种启发式算法来找到近似最优解。
In this paper, an optimal mathematical model solving method, the successive approximation method, of the nature of nonlinear integral programming problem is suggested.
本文提出一种求解优化数学模型,属于非线性整数规划问题的方法——逐次近似法。
In this paper, the mathematical model of flatness error is established. The theory of optimal approximation is used to analyze the theoretical problem of flatness error.
应用最佳一致逼近理论,从最小条件出发建立了评定平面度误差的数学模型,对评定平面度误差的理论问题进行了分析研究。
In this paper, the mathematical model of flatness error is established. The theory of optimal approximation is used to analyze the theoretical problem of flatness error.
应用最佳一致逼近理论,从最小条件出发建立了评定平面度误差的数学模型,对评定平面度误差的理论问题进行了分析研究。
应用推荐