In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
The existence and uniqueness of the solution to these problems with the use of FEM are proved and optimal error estimates in weighted L2-norm are given.
本文讨论二维奇异非稳态问题的有限元方法,证明了弱解的存在唯一性,并给出有限元解的加权L2-模估计。
The finite element methods of a class of singular linear and semilinear elliptic and parabolic problems are considered and the error estimates in weighted L2 norm are derived.
考虑了二维奇异线性及半线性椭圆和抛物问题的有限元方法,给出加权L2 模的误差估计。
Furthermore, the optimal error estimates in the norm L2 are derived. Finally, Numerical experiment verifies the theoretical results.
进一步,对相应有限元解进行误差分析,得到其最优l 2模估计,数值实验验证了理论结果的正确性。
Furthermore, the optimal error estimates in the norm L2 are derived. Finally, Numerical experiment verifies the theoretical results.
进一步,对相应有限元解进行误差分析,得到其最优l 2模估计,数值实验验证了理论结果的正确性。
应用推荐