This paper studies the design of pattern recognition system based multiple classifiers combination.
本文对多分类器融合模式识别的设计方法进行了研究。
The methods of multiple classifiers combination are proposed to classify protein-protein interaction sites.
提出将多分类器组合算法应用于蛋白质-蛋白质相互作用位点预测。
There are two strategies for multiple classifiers combination: multiple classifiers fusion and multiple classifiers selection.
多分类器组合策略有两类:多分类器融合和多分类器选择。
Multiple classifiers combination makes use of the complementarities of different classifiers and different characters to improve recognition correctness.
多分类器组合利用不同分类器、不同特征之间的互补性,提高了组合分类器的识别率。
Based on thought of multiple classifiers combination method, this paper proposes a combination classification method of multiple decision trees based on PSO Algorithm.
针对数据挖掘中的分类问题,依据组合分类方法的思想,提出一种基于遗传算法的多重决策树组合分类方法。
The combination of multiple classifiers is one of the effective ways to improve the recognition performance.
多分类器组合是提高识别效果的一条有效途径。
A new method of speech emotion recognition via voting combination of multiple classifiers is proposed for improving speech emotion classification rate.
为了提高语音情感的正确识别率,提出一种基于多分类器投票组合的语音情感识别新方法。
A new method of speech emotion recognition via voting combination of multiple classifiers is proposed for improving speech emotion classification rate.
为了提高语音情感的正确识别率,提出一种基于多分类器投票组合的语音情感识别新方法。
应用推荐