The nonlinear governing equations of the system are derived from the Lagrange equation.
由拉格朗日方程导出系统的非线性控制方程。
The fundamental idea of dynamic modelling of complex spacecraft system using Bond Graph theory, and the procedure of using Lagrange Bond Graph are discussed.
介绍了键图理论应用于建立复杂航天器系统的动力学模型的基本思想以及拉格朗日键图的具体应用步骤。
An algorithm for power system frequency measurement based on numerical differentiation and central Lagrange interpolation is presented.
提出了一种基于数字微分和拉格朗日插值的系统频率快速而准确的测量算法。
Applying the method of Lagrange multiplier, the system is optimized for maximum cooling rate and gets the rate general expression.
运用拉格朗日乘数法,以最大制冷量为优化目标,对该系统进行了优化,得到最大制冷量的一般表达式。
According to Lagrange dynamical equation and Kriloff theory, the mathematical model of integrated anti-roll system "ship -fin stabilizer-passive anti-roll tank" is built up.
根据拉格朗日动力学方程及克雷洛夫-勃拉哥维辛斯的理论,首次建立了“船舶-减摇鳍-被动式减摇水舱”综合减摇系统的数学模型。
Apply Lagrange equation of the first kind to the system, and get a set of the differential - algebraic equations (DAEs) of its absolute coordinates.
对系统应用第一类拉格朗日方程,得到系统位形坐标的微分—代数方程组。
Secondly, the control system structure and station keeping problems near collinear Lagrange points are studied.
研究了编队飞行的控制系统结构和共线拉格朗日点附近的周期轨道保持控制问题。
Based on Lagrange dynamics model of vibration machinery system is established. Natural frequency, vibration model and systemic response are worked out.
基于拉格朗日法建立振动筛系统动力学模型,分析出了该系统的固有频率、主振型及系统的响应。
Movable equation of the inverted pendulum is derived, according to the dynamics analysis method of Lagrange. By system feasible approximation, an easily analytical math model is deduced.
基于拉格朗日动力学分析方法,推导出倒立摆的运动方程,在对系统进行可行的近似化处理后,得出了便于分析的数学模型。
To investigate the torsional vibration of the system, the dynamics governing equations of the system is established using the Lagrange equation and the assumed mode method.
为了研究此系统的扭转振动,运用拉格朗日方程和假设模态法建立了系统的动力学方程。
Recent trends in the Lagrange equation's conversion and form from inertial system to non-inertial system, the application of energy theorem, energy conservation law, etc. are introduced.
介绍了在非惯性系中建立动力学方程的方法,惯性系中拉格朗日方程在非惯性系中的转换形式,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
According to the momentum conservation law, the dynamic equations of dual-arm space robot system were established through Lagrange equation of the second kind.
依据系统动量守恒关系和拉格朗日第二类方程,推导了漂浮基双臂空间机器人系统的动力学方程。
Combining the relationship of the linear momentum conversation and the Lagrange approach, the full-controlled dynamic equation of space-based robot system with dual-arms were analysed and established.
利用拉格朗日方法并结合系统动量守恒关系,分析、建立了漂浮基双臂空间机器人完全能控形式的系统动力学方程。
Moving boundary problem can easily be solved with equations under the Lagrange Coordinate System for numerical computations of homogenous flow in interior ballistics.
对内弹道均相流数值计算,用拉格朗日坐标下的方程组,容易处理运动边界问题。
Under a Lagrange coordinate system the trajectory of particles was tracked by the use of a random orbital method.
在拉格朗日坐标系下,用随机轨道法跟踪颗粒的轨迹。
Under a Lagrange coordinate system the trajectory of particles was tracked by the use of a random orbital method.
在拉格朗日坐标系下,用随机轨道法跟踪颗粒的轨迹。
应用推荐